Advertisement

One special current waveform of toothed pole doubly salient permanent magnet machine for marine current energy conversion system

  • Hao ChenEmail author
  • Tianhao Tang
  • Jingang Han
  • Nadia Aït-Ahmed
  • Mohamed Machmoum
  • Mohammed El-Hadi Zaïm
Original Paper
  • 9 Downloads

Abstract

Marine current energy becomes more and more attractive because of its remarkable advantages. In this paper, one toothed pole doubly salient permanent magnet (DSPM) machine is proposed for marine current energy conversion system. This kind of machine has a simple structure, good fault tolerance, reliable operation, and high power density, which make it very suitable for marine tidal current applications. However, DSPM machine is conventionally operated by means of current chopping control and angle position control in a different region due to the trapezoidal back electromotive force (EMF) waveform. While for this toothed pole DSPM machine, the PM flux-linkage, inductance, and back EMF have more sinusoidal waveforms, which make the sinusoidal current be possible. Unfortunately, the classic sinusoidal current generates a relatively large torque ripple owing to the special inductance. Consequently, the primary purpose of this paper was to design one special current waveform to further reduce the torque ripple. Firstly, the model of the toothed pole DSPM machine is presented. Secondly, the torque distribution theory is proposed without taking into account mutual inductance effect. The mathematic expressions of the currents are deduced subsequently. Thirdly, several fitting currents are analyzed and compared based on the theoretical currents. Moreover, the simulation results verify the torque distribution theory and allow proposing the optimal current waveform (fundamental and second harmonic) in comprehensive consideration of the voltage, powers, and torque ripple. Finally, some robustness analysis is also presented to show the good performances of this current.

Keywords

Marine current energy DSPM machine Torque distribution Harmonic current Torque ripple suppression Robustness 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No: 61503242), China Postdoctoral Science Foundation (Grant No: 2015M581584) and Natural Science Foundation of Shanghai (15ZR1419800).

References

  1. 1.
    Chen H, Tang T, Aït-Ahmed N, et al. (2017) Generators for marine current energy conversion system: a state of the art review. In: 43rd Annual conference of the IEEE industrial electronics society, IECON 2017, IEEE, pp 2504–2509.  https://doi.org/10.1109/IECON.2017.8216421
  2. 2.
    Zhou Z, Benbouzid M, Charpentier JF et al (2017) Developments in large marine current turbine technologies—a review. Renew Sustain Energy Rev 71:852–858.  https://doi.org/10.1016/j.rser.2016.12.113 CrossRefGoogle Scholar
  3. 3.
    Gish L A, Hawbaker G (2016) Experimental and numerical study on performance of shrouded hydrokinetic turbines. In: OCEANS 2016 MTS/IEEE Monterey. IEEE, pp 1–5.  https://doi.org/10.1109/OCEANS.2016.7761041
  4. 4.
    Shahsavarifard M, Bibeau E L, Birjandi A H (2013) Performance gain of a horizontal axis hydrokinetic turbine using shroud. In: 2013 OCEANS-San Diego. IEEE, pp 1–5.  https://doi.org/10.23919/OCEANS.2013.6740968
  5. 5.
    Samad H, Hussain M A, Mumtaz F, et al. (2015) Design and experimental validation of horizontal axis ocean current turbine. In: 2015 Power generation system and renewable energy technologies (PGSRET). IEEE, pp 1–6.  https://doi.org/10.1109/PGSRET.2015.7312242
  6. 6.
    Hu Q, Li Y, Di Y et al (2017) A large-eddy simulation study of horizontal axis tidal turbine in different inflow conditions. J Renew Sustain Energy 9(6):064501.  https://doi.org/10.1063/1.5011061 CrossRefGoogle Scholar
  7. 7.
    Wang Q, Zhang P, Li Y (2018) Structural dynamic analysis of a tidal current turbine using geometrically exact beam theory. J Offshore Mech Arct Eng 140(2):021903.  https://doi.org/10.1115/1.4038172 CrossRefGoogle Scholar
  8. 8.
    Winter AI (2011) Differences in fundamental design drivers for wind and tidal turbines. In: OCEANS 2011 IEEE-Spain. IEEE, pp 1–10.  https://doi.org/10.1109/Oceans-Spain.2011.6003647
  9. 9.
    VanZwieten JH, Oster CM, Duerr AES (2011) Design and analysis of a rotor Blade optimized for extracting energy from the Florida Current. In: ASME 2011 30th international conference on ocean, offshore and Arctic engineering. American Society of Mechanical Engineers, pp 335–341.  https://doi.org/10.1115/OMAE2011-49140
  10. 10.
    Akimoto H, Tanaka K, Park J C, et al. (2012) Conceptual study of tidal stream and ocean current turbine with floating axis configuration. In: 2012 Oceans-Yeosu. IEEE, pp 1–4.  https://doi.org/10.1109/OCEANS-Yeosu.2012.6263627
  11. 11.
    Borghi M, Kolawole F, Gangadharan S, et al. (2012) Design, fabrication and installation of a hydrodynamic rotor for a small-scale experimental ocean current turbine. In: 2012 Proceedings of IEEE Southeastcon. IEEE, pp 1–6.  https://doi.org/10.1109/SECON.2013.6567443
  12. 12.
    Chen H, Tang T, Aït-Ahmed N et al (2018) Attraction, challenge and current status of marine current energy. IEEE Access 6:12665–12685.  https://doi.org/10.1109/ACCESS.2018.2795708 CrossRefGoogle Scholar
  13. 13.
    Chen H, Aït-Ahmed N, Moreau L, et al. (2014) Performances analysis of a doubly salient permanent magnet generator for marine tidal current applications. In: 2014 International power electronics and application conference and exposition. IEEE, pp 320–325.  https://doi.org/10.1109/PEAC.2014.7037875
  14. 14.
    Chen H, Aït-Ahmed N, Machmoum M, et al. (2013) Modeling and current control of a double salient permanent magnet generator (DSPMG). In: 2013 15th European conference on power electronics and applications (EPE). IEEE, pp 1–10.  https://doi.org/10.1109/EPE.2013.6634473
  15. 15.
    Thomas K (2007) Low speed energy conversion from marine currents. Dissertation, Uppsala UniversityGoogle Scholar
  16. 16.
    Kim JH, Sarlioglu B (2013) Preliminary design of axial flux permanent magnet machine for marine current turbine. In: IECON 2013-39th annual conference of the IEEE industrial electronics society. IEEE, pp 3066–3071.  https://doi.org/10.1109/IECON.2013.6699618
  17. 17.
    Li Z, Maki N, Ida T et al (2018) Comparative study of 1-MW PM and HTS synchronous generators for marine current turbine. IEEE Trans Appl Supercond 28(4):1–5.  https://doi.org/10.1109/TASC.2018.2810302 CrossRefGoogle Scholar
  18. 18.
    Djebarri S, Charpentier JF, Scuiller F, et al. (2014) A systemic design methodology of PM generators for fixed-pitch marine current turbines. In: 2014 First international conference on green energy ICGE 2014. IEEE, pp 32–37.  https://doi.org/10.1109/ICGE.2014.6835393
  19. 19.
    Yuen K, Thomas K, Grabbe M et al (2009) Matching a permanent magnet synchronous generator to a fixed pitch vertical axis turbine for marine current energy conversion. IEEE J Ocean Eng 34(1):24–31.  https://doi.org/10.1109/JOE.2008.2010658 CrossRefGoogle Scholar
  20. 20.
    Nilsson K, Grabbe M, Yuen K, et al. (2007) A direct drive generator for marine current energy conversion-first experimental results. In: European wave and tidal energy conferenceGoogle Scholar
  21. 21.
    Djebarri S, Charpentier JF, Scuiller F, Benbouzid M (2016) Design and performance analysis of double stator axial flux PM generator for rim driven marine current turbines. IEEE J Ocean Eng 41(1):50–66.  https://doi.org/10.1109/JOE.2015.2407691 CrossRefGoogle Scholar
  22. 22.
    Djebarri S, Charpentier J F, Scuiller F, Benbouzid M, Guemard S (2012). Rough design of a double-stator axial flux permanent magnet generator for a rim-driven marine current turbine. In: 2012 IEEE international symposium on industrial electronics. IEEE, pp 1450–1455.  https://doi.org/10.1109/ISIE.2012.6237305
  23. 23.
    Saou R, Zaïm ME, Alitouche K (2008) Optimal designs and comparison of the doubly salient permanent magnet machine and flux-reversal machine in low-speed applications. Electric Power Compon Syst 36(9):914–931.  https://doi.org/10.1080/15325000801960564 CrossRefGoogle Scholar
  24. 24.
    Zhang J, Moreau L, Guo J, et al. (2014) Joint optimization of electromagnetic structure and control of a double stator permanent magnet generator for tidal energy applications. In: 2014 International power electronics and application conference and exposition. IEEE, pp 485–489.  https://doi.org/10.1109/PEAC.2014.7037904
  25. 25.
    Drouen L, Charpentier JF, Semail E, et al. (2007) Study of an innovative electrical machine fitted to marine current turbines. In: OCEANS 2007-Europe. IEEE, pp 1–6.  https://doi.org/10.1109/oceanse.2007.4302284
  26. 26.
    Cheng M, Hua W, Zhang J, Zhao W (2011) Overview of stator-permanent magnet brushless machines. IEEE Trans Ind Electron 58(11):5087–5101.  https://doi.org/10.1109/TIE.2011.2123853 CrossRefGoogle Scholar
  27. 27.
    Hua W, Cheng M (2008) A new model of vector-controlled doubly-salient permanent magnet motor with skewed rotor. In: 2008 International conference on electrical machines and systems. IEEE, pp 3026–3031Google Scholar
  28. 28.
    Liao Y, Liang F (1995) Lipo TA (1995) A novel permanent magnet motor with doubly salient structure. IEEE Trans Ind Appl 31(5):1069–1078.  https://doi.org/10.1109/28.464521 CrossRefGoogle Scholar
  29. 29.
    Rezzoug A, Zaïm MEH (2013) Non-conventional electrical machines. Wiley, HobokenGoogle Scholar
  30. 30.
    Chen H, Tang T, Han J et al (2019) Current waveforms analysis of toothed pole doubly salient permanent magnet (DSPM) machine for marine tidal current applications. Int J Electr Power Energy Syst 106:242–253.  https://doi.org/10.1016/j.ijepes.2018.10.005 CrossRefGoogle Scholar
  31. 31.
    Moreau L (2005) Modélisation, conception et commande de génératrices à réluctance variable basse vitesse. Dissertation, Université de NantesGoogle Scholar
  32. 32.
    Saou R (2008) Modélisation et optimisation de machines lentes à aimants permanents: machines à double saillance et à inversion de flux. Dissertation, Ecole Nationale Polytechnique d’AlgerGoogle Scholar
  33. 33.
    Zaïm ME, Moreau L, Alli SS, et al. (2017) Structures of low speed doubly salient permanent magnet machine. In: 2017 IEEE vehicle power and propulsion conference (VPPC). IEEE, pp 1–6.  https://doi.org/10.1109/VPPC.2017.8331008
  34. 34.
    Chen H (2005) Modeling and control of a marine current energy conversion system using a doubly salient permanent magnet generator. Dissertation, Université de NantesGoogle Scholar
  35. 35.
    Cheng M, Chau KT, Chan CC et al (2003) Control and operation of a new 8/6-pole doubly salient permanent-magnet motor drive. IEEE Trans Ind Appl 39(5):1363–1371.  https://doi.org/10.1109/TIA.2003.816506 CrossRefGoogle Scholar
  36. 36.
    Li Y, Mi CC (2007) Doubly salient permanent-magnet machine with skewed rotor and six-state commutating mode. IEEE Trans Magn 43(9):3623–3629.  https://doi.org/10.1109/TMAG.2007.901949 CrossRefGoogle Scholar
  37. 37.
    Cheng M, Hua W, Zhu XY, et al. (2007) A simple method to improve the sinusoidal static characteristics of doubly-salient PM machine for brushless AC operation. In: 2007 International conference on electrical machines and systems (ICEMS). IEEE, pp 665–669Google Scholar
  38. 38.
    Chau KT, Sun Q, Fan Y et al (2005) Torque ripple minimization of doubly salient permanent-magnet motors. IEEE Trans Energy Convers 20(2):352–358.  https://doi.org/10.1109/TEC.2004.841507 CrossRefGoogle Scholar
  39. 39.
    Cheng M, Sun Q, Zhou E (2006) New self-tuning fuzzy PI control of a novel doubly salient permanent-magnet motor drive. IEEE Trans Ind Electron 53(3):814–821.  https://doi.org/10.1109/TIE.2006.874269 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanghai Maritime UniversityShanghaiChina
  2. 2.Institut de Recherche en Energie Electrique de Nantes AtlantiqueUniversity of NantesSaint-NazaireFrance

Personalised recommendations