Advertisement

Utilization of finite state machine approach for microgrid modeling

  • Martina KajanovaEmail author
  • Peter Bracinik
  • Marek Roch
Original Paper

Abstract

The paper describes the finite state machines (FSM) approach in a microgrid’s distributed energy sources modeling. It defines FSM models for a small hydro power plant, a cogeneration unit and a photovoltaic power plant. A comparison of simulation results obtained by FSM models and purely dynamic simulations models, from an execution time point of view, is presented as well.

Keywords

Finite state machines Microgrid Renewable energy sources Mathematical model 

Notes

References

  1. 1.
    Distributed generation (2013). http://www.distributed-generation.com
  2. 2.
    Zhong QC, Hornik T (2013) Control of power inverters in renewable energy and smart grid integration. Wiley, London. ISBN 978-0-470-66709-5Google Scholar
  3. 3.
    Tinkler M. Electric energy storage systems for the electric enterprise trends and opportunities. Future of energy summit MaRS Discovery District Toronto, CanadaGoogle Scholar
  4. 4.
    Microgrids at Berkeley lab (2017). https://building-microgrid.lbl.gov/about-microgrids-0
  5. 5.
    Massmann J, Roehder A, Schnettler A (2017) Modeling approaches for considering active distribution grids in power system stability studies. Electr Eng 99:697.  https://doi.org/10.1007/s00202-016-0398-x CrossRefGoogle Scholar
  6. 6.
    Reddy SS (2017) Optimal power flow with renewable energy resources including storage. Electr Eng 99:685.  https://doi.org/10.1007/s00202-016-0402-5 CrossRefGoogle Scholar
  7. 7.
    Pertl M, Weckesser T, Rezkalla M et al (2018) Transient stability improvement: a review and comparison of conventional and renewable-based techniques for preventive and emergency control. Electr Eng 100:1701.  https://doi.org/10.1007/s00202-017-0648-6 CrossRefGoogle Scholar
  8. 8.
    Latkova M, Bracinik P, Motyka D (2018) Utilization of finite state machine approach for smart region generation modelling. In: Elektro. ISBN: 978-1-5386-4758-5Google Scholar
  9. 9.
    Látková M, Bracinik P, Bahernik M, Hoger M (2015) Modelling of a dynamic cooperation between a PV array and DC boost converter. In: 5th International youth conference on energy (IYCE), Pisa, Italy. ISBN 978-1-4673-7171-1Google Scholar
  10. 10.
    Teodorescu R, Liserre M, Rodriguez P (2011) Grid converters and photovoltaic and wind power systems. Wiley, New York. ISBN 978-0-470-05751-3CrossRefGoogle Scholar
  11. 11.
    Elgerd OI (1973) Electric energy systems theory: an introduction. McGraw-Hill, New YorkGoogle Scholar
  12. 12.
    Eremia M, Shahidehpour M (2013) Handbook of electrical power system dynamics: modelling, stability and control. Wiley, New York. ISBN 978-1-118-49717-3CrossRefGoogle Scholar
  13. 13.
    Rowen WI (1983) Simplified mathematical representations of heavy-duty gas turbines. J Eng Power 105(4):865–869CrossRefGoogle Scholar
  14. 14.
    Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Power Electrical Systems, Faculty of Electrical EngineeringUniversity of ZilinaZilinaSlovak Republic

Personalised recommendations