Adaptive droop control for high-performance operation in low-voltage DC microgrids

  • Mohamed A. GhalibEmail author
  • E. G. Shehat
  • Jean Thomas
  • R. M. Mostafa
Original Paper


The most well-known means for the integration of various renewable energy resources is DC microgrids (DCMGs). Different control algorithms have been proposed to regulate the current and voltage of parallel energy sources. Droop control, a method for controlling DC microgrids, does not require a communication link. However, droop control has some constraints, such as not properly sharing the load among parallel converters and deteriorating voltage regulation. This paper proposes an adaptive droop controller to mitigate the problems of conventional droop control. The droop parameters are evaluated online and are adapted utilizing the primary current sharing loops to decrease the deviation in the load current sharing. In addition, the droop lines are shifted by the second loop to eliminate the bus voltage deviation of DCMGs. The proposed algorithm is assessed under various input voltages and load resistances. The simulation and experimental results illustrate the good performance of the introduced technique compared to classic control.


DCMGs Equal load sharing Adaptive droop control Circulation current Voltage regulation 



This research paper is supported by the electrical department at the college of industrial education, Beni-Suef University, Egypt. The assistant of the department is gratefully acknowledged.


  1. 1.
    Nikos DH, Vasilis AK, Christina NP et al (2016) Microgrids in distribution. Smart grid handbook. Wiley, Hoboken. CrossRefGoogle Scholar
  2. 2.
    Shuai Z, He D, Fang J, Shen Z et al (2016) Robust droop control of DC distribution networks. IET Renew Power Gener 10(6):807–814CrossRefGoogle Scholar
  3. 3.
    Cingoz F, Elrayyah A et al (2015) Optimized droop control parameter for effective load sharing and voltage regulation in DC microgrids. Electr Power Compon Syst 43(10):879–889CrossRefGoogle Scholar
  4. 4.
    Khorsandi A, Ashourloo M, Mokhtari H (2014) A decentralized control method for a low-voltage DC microgrid. IEEE Trans Energy Convers 29(4):793–801CrossRefGoogle Scholar
  5. 5.
    Kanti S, Kumar S, Kishore K (2018) Control techniques in AC, DC, and hybrid AC–DC microgrids: a review. IEEE Trans Emerg Sel 6(2):1–22Google Scholar
  6. 6.
    Wang P, Lu X, Yang X et al (2016) An improved distributed secondary control method for DC microgrids with enhanced dynamic current sharing performance. IEEE Trans Power Electron 31(9):6658–6673CrossRefGoogle Scholar
  7. 7.
    Ratna D, Shivam (2018) Distributed control for DC microgrid based on optimized droop parameters. IETE J Res 45(19):1–12Google Scholar
  8. 8.
    Muamer MS, Tariq I, John EQ (2018) Modified droop method based on master current control for parallel-connected DC–DC boost converters. J Electr Comput Eng 5:1–14Google Scholar
  9. 9.
    Tuyen VU, Dallas P, Diaz F et al (2017) Robust adaptive droop for DC microgrids. Electr Power Syst Res 146:95–106CrossRefGoogle Scholar
  10. 10.
    Mohamed M, Mostafa M, El-Satter A (2017) An Adaptive droop control scheme for DC microgrids integrating sliding mode voltage and current controlled Boost converters. IEEE Trans Smart Grid 1:1–9Google Scholar
  11. 11.
    Dragi CT, Lu X, Vasquez JC et al (2016) DC microgrids—part I: a review of control strategies and stabilization techniques. IEEE Trans Power Electron 31(7):4876–4891Google Scholar
  12. 12.
    Vu TV, Paran S, Diaz Franco F et al (2017) An alternative distributed control architecture for improvement in the transient response of DC microgrids. IEEE Trans Ind Electron 64(1):574–584CrossRefGoogle Scholar
  13. 13.
    Augustine S, Mishra MK, Lakshminarasamma N (2013) Real-time distributed power optimization in the DC microgrids of shipboard power systems. In: Proceedings of IEEE SDEMPED conference. pp 454–460Google Scholar
  14. 14.
    Meng L, Shafiee Q, Ferrari G, Fulwani D et al (2017) Review on control of DC microgrids. IEEE J Emerg Sel 5(3):928–948Google Scholar
  15. 15.
    Yang N, Paire D, Gao F et al (2015) Compensation of droop control using common load condition in DC microgrids to improve voltage regulation and load sharing. Int J Electr Power Energy Syst 64:752–760CrossRefGoogle Scholar
  16. 16.
    Huang PH, Liu PC, Xiao W, El Moursi MS (2015) A novel droop-based average voltage sharing control strategy for DC microgrids. IEEE Trans Smart Grid 6(3):1096–1106CrossRefGoogle Scholar
  17. 17.
    Lu X, Sun K, Vasquez Guerrero JM et al (2014) State-of charge balance using adaptive-droop control for distributed energy storage systems in DC microgrid applications. IEEE Trans Ind Electron 61(6):2804–2815CrossRefGoogle Scholar
  18. 18.
    Vu TV, Paran S, El Mezyani T et al (2015) Real-time distributed power optimization in the DC microgrids of shipboard power systems. In: IEEE electric ship technologies symposium EST, Alexandria, VA, USA. pp 118–112Google Scholar
  19. 19.
    Amir K, Mojtaba A, Hossein M, Reza I (2016) Automatic droop control for a low voltage DC microgrids. IET Gener Transm Distrib 10(1):41–47CrossRefGoogle Scholar
  20. 20.
    Schonberger J, Duke R, Round S (2006) DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid. IEEE Trans Ind Electron 53(5):1453–1460CrossRefGoogle Scholar
  21. 21.
    Guerrero J, Vasquez J, Matas J, de Vicua L et al (2011) Hierarchical control of droop-controlled ac and DC microgrids: a general approach toward standardization. IEEE Trans Ind Electron 58(1):158–172CrossRefGoogle Scholar
  22. 22.
    Anand S, Fernandes B (2012) Modified droop controller for paralleling of DC–DC converters in standalone DC system. IET Power Electron 5(6):782–789CrossRefGoogle Scholar
  23. 23.
    Anand S, Fernandes BG, Guerrero M (2013) Distributed control to ensure proportional load sharing and improve voltage regulation in low voltage DC microgrids. IEEE Trans Power Electron 28(4):1900–1913CrossRefGoogle Scholar
  24. 24.
    Lu X, Guerrero J, Sun K, Vasquez J (2014) An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy. IEEE Trans Power Electron 29(4):1800–1812CrossRefGoogle Scholar
  25. 25.
    Yang J, Jin X, Wu X, Acuna P et al (2017) Decentralised control method for DC microgrids with improved current sharing accuracy. IET Gener Transm Distrib 11(3):696–706CrossRefGoogle Scholar
  26. 26.
    Erdogan AD, Aydemir MT (2009) Application of adaptive droop method to boost converters operating at the output of fuel cells. In: International conference on electrical and electronics. ELECO’09. pp 321–325Google Scholar
  27. 27.
    Chiang HS, Jen K, You GH (2016) Improved droop control method with precise current sharing and voltage regulation. IET Power Electron 9(4):789–800CrossRefGoogle Scholar
  28. 28.
    Dahiya R, Shiva (2017) Intelligent distributed control techniques for effective current sharing and voltage regulation In DC distributed systems. Arab J Sci Eng 42(12):5071–5081CrossRefGoogle Scholar
  29. 29.
    Bunker KJ, Weaver WW (2017) Multidimensional droop control for wind resources in DC microgrids. IET Gener Transm Distrib 11(3):657–664CrossRefGoogle Scholar
  30. 30.
    Augustine S, Lakshminarasamma N, Mishra MK (2016) Control of photovoltaic-based low-voltage dc microgrid system for power sharing with modified droop algorithm. IET Power Electron 9(6):1132–1143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Automatic Control Department, College of Industrial EducationBeni-Suef UniversityBeni SuefEgypt
  2. 2.Electrical Engineering Department, College of EngineeringMinia UniversityEl MinyaEgypt
  3. 3.Electrical Engineering Department, College of EngineeringBeni-Suef UniversityBeni SuefEgypt

Personalised recommendations