Electrical Engineering

, Volume 101, Issue 3, pp 1053–1058 | Cite as

Organic substrate high-voltage performance: plausible capacitive isolation technology in integrated circuit package bill of materials

  • Enis TuncerEmail author
  • Mohan Gupta
  • Daryl Heussner
  • Shawn O’Connor
  • Thu Tran
Original Paper


Isolation is required in electronic circuits to create zones for various voltage levels, where only low-voltage signals are allowed to communicate between zones. Application of such devices in circuits has challenges related to the anticipated working conditions at high voltages and its effect on design through employed materials, which need to provide the voltage isolation with good margin during the lifetime of the device. One of the technologies is provided with a capacitor-based isolators, which employ front- or back-end-of-the-line wafer-level dielectrics. Here, we propose a semiconductor packaging solution using a material, where a laminate buildup is characterized for high-voltage performance. The dielectric breakdown scaling for the material is reported for design considerations.


Printed circuit board Capacitive isolation Ramp-to-breakdown High-voltage design Area scaling 



  1. 1.
    Heidel ND, Usechak NG, Dohrman CL, Conway JA (2016) A review of electronic-photonic heterogeneous integration at DARPA. IEEE J Select Top Quant Electron 22(6):482CrossRefGoogle Scholar
  2. 2.
    Or-Bach Z (2016) Monolithic 3D integration. Springer, Cham, pp 51–91Google Scholar
  3. 3.
    Rahim K, Mian A (2017) A review on laser processing in electronic and MEMS packaging. J Electron Pack 139(3):030801CrossRefGoogle Scholar
  4. 4.
    Seal S, Mantooth HA (2017) High performance silicon carbide power packaging–past trends, present practices, and future directions. Energies 10(3):341CrossRefGoogle Scholar
  5. 5.
    Kumar A, Verma G, Nath V, Choudhury S, Packaging IC (2017) 3D IC technology and methods. Springer, Singapore, pp 303–317Google Scholar
  6. 6.
    Sze SM (2008) Semiconductor devices: physics and technology. Wiley, New YorkGoogle Scholar
  7. 7.
    Blalack T, Leclercq Y, Yue CP (2002) In: Proceedings of the bipolar/BiCMOS circuits and technology meeting. pp 205–211Google Scholar
  8. 8.
    Thawani VK, Reghunathan A (2017) Fully integrated signal and power isolation—applications and benefits. SLYY112. Texas Instrument Incorporated, DallasGoogle Scholar
  9. 9.
    Bonifield T (2016) High-voltage isolation quality and reliability for amc130x. SSZY024. Texas Instruments Incorporated, DallasGoogle Scholar
  10. 10.
    Texas Instrument Incorporated, Dallas TX, Isolation Glossary, SLLA353 edn (2014)Google Scholar
  11. 11.
    Kamath AS, Soundarapandian K (2014) High-voltage reinforced isolation: definitions and test methodologies. SLYY063. Texas Instrument Incorporated, DallasGoogle Scholar
  12. 12.
    Piipponen KVT, Sepponen R, Eskelinen P (2007) A biosignal instrumentation system using capacitive coupling for power and signal isolation. IEEE Trans Biomed Eng 54(10):1822–1828CrossRefGoogle Scholar
  13. 13.
    Meinel W (1988) Packages for hybrid integrated circuit high voltage isolation amplifiers and method of manufacture. US Patent 4,780,795Google Scholar
  14. 14.
    Somerville T (1989) Isolation amplifier with precise timing of signals coupled across isolation barrier. US Patent 4,835,486Google Scholar
  15. 15.
    Scott J, Sooch N, Welland D (1999) Analog isolation system with digital communication across a capacitive barrier. US Patent 5,870,046Google Scholar
  16. 16.
    Scott J, Sooch N, Welland D (2002) Capacitive isolation system with digital communication and power transfer. US Patent 6,430,229Google Scholar
  17. 17.
    Krone A, Tuttle T, Scott J, Hein J, Dupuis T, Sooch N (2001) In: 2001 IEEE international solid-state circuits conference. Digest of technical papers. ISSCC (Cat. No.01CH37177), pp 300–301Google Scholar
  18. 18.
    Perrin R, Allard B, Martin C, Buttay C (2016) In: CIPS 2016; 9th international conference on integrated power electronics systems, pp 1–4Google Scholar
  19. 19.
    Kliger R (2003) Integrated transformer-coupled isolation. IEEE Instrum Meas Mag 6(1):16–19CrossRefGoogle Scholar
  20. 20.
    Lynch L (1989) Printed wiring boards, vol 1, 5th edn. Electronic materials handbook. ASM International, Materials Park, pp 505–629Google Scholar
  21. 21.
    Nakamura Y, Katogi S (2013) Technology trends and future history of semicondutor packaging substrate material. Technical Report No. 55, Hitachi ChemicalGoogle Scholar
  22. 22.
    Barnikas R (1983) In: Engineering dielectrics, vol. IIA, ed. by Barnikas/Eichhorn (ASTM)Google Scholar
  23. 23.
    Meek JM, Craggs JD (1953) Electrical breakdown of gases. Oxford at the Clarendon Press, OxfordzbMATHGoogle Scholar
  24. 24.
    Ushakov VY (2004) Insulation of high voltage equipment. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    Weibull W (1939) A statistical theory of the strength of materials. No. 151 in Ingeniörsvetenskapsakademiens Handlingar. Generalstabens Litografiska anstalts förlag, StockholmGoogle Scholar
  26. 26.
    Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18(3):293–297zbMATHGoogle Scholar
  27. 27.
    Tuncer E, Sauers I, James DR, Ellis AR, Pace MO (2006) On dielectric breakdown statistics. J Phys D Appl Phys 39:4257CrossRefGoogle Scholar
  28. 28.
    Tuncer E, Polizos G, Sauers I, James DR, Ellis AR, More KL (2012) Epoxy nanodielectrics fabricated with in situ and ex situ techniques. J Exp Nanosci 7(3):274CrossRefGoogle Scholar
  29. 29.
    Laihonen SJ, Gustafsson A, Gafvert U, Schutte T, Gedde UW (2007) Area dependence of breakdown strength of polymer films: automatic measurement method. IEEE Trans Dielectr Electric Insul 14(2):263CrossRefGoogle Scholar
  30. 30.
    Laihonen SJ, Gafvert U, Schutte T, Gedde UW (2007) DC breakdown strength of polypropylene films: area dependence and statistical behavior. IEEE Trans Dielectr Electric Insul 14(2):275CrossRefGoogle Scholar
  31. 31.
    Zhou R, Shah MR, Haran KS, Radun AV, Tuncer E (2015) Switched capacitive devices and method of operating such devices. US Patent Application 20150134109 A1Google Scholar
  32. 32.
    Kearney DJ, Kicin S, Bianda E, Krivda A (2017) PCB embedded semiconductors for low-voltage power electronic applications. IEEE Trans Comp Pack Manuf Technol 7(3):387Google Scholar
  33. 33.
    Shugg WT (1995) Handbook of electrical and electronic insulating materials, 2nd edn. IEEE Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Semiconductor Packaging, Technology & Manufacturing GroupTexas Instrument IncorporatedDallasUSA

Personalised recommendations