Electrical Engineering

, Volume 101, Issue 3, pp 935–941 | Cite as

Study on the properties of compounds formed by the reaction of SF6 gas with metal electrode

  • Jun Deng
  • Zhicheng XieEmail author
  • Hai Qian
  • Wenhao Lu
  • Weidong Ding
Original Paper


Plenty of solid products will be produced when the arc discharge fault occurs in SF6 gas-insulated electrical equipment, which will extremely threaten the internal insulation properties of the equipment. Therefore, it is necessary to carry out research on the solid products formed by the reaction of SF6 with metal electrode under electric arc, aiming to study their effect on the operation of the equipment. First of all, the formation characteristics of the solid products with different metal electrodes and different pressures are studied. Then, the composition of the solid products is determined. Besides, the quantitative relationship between the mass of the solid products and the discharge energy is analyzed as well.


SF6 gas Electric arc Solid products Decomposition mechanism Discharge energy 



This paper is supported by the National Key Research and Development Program of China (2017YFB0902701).


  1. 1.
    Xuechen LUO (1998) SF6 gas insulated fully enclosed combined electrical appliances (GIS). Electric Power Press, BeijingGoogle Scholar
  2. 2.
    Chu FY (1986) SF6 decomposition in gas-insulated equipment. IEEE Trans Electr Insul 21(5):693–725CrossRefGoogle Scholar
  3. 3.
    Airey DR (2001) Axial and radial heat transport in a high-temperature SF6 arc. J Phys D Appl Phys 12(1):113–125CrossRefGoogle Scholar
  4. 4.
    Mortensen TC, Bunganaen Y, Scelsi GB et al (1994) Gaseous and solid by-products of SF6 discharges. In: Proceedings of the 4th international conference on properties and applications of dielectric materials, Queensland, Australia, pp 135–138Google Scholar
  5. 5.
    Wang Y, Ji S, Li J et al (2013) Investigations on discharge and decomposition characteristics of SF6 under various experimental conditions. High Volt Eng 39(8):1952–1959Google Scholar
  6. 6.
    Bruno G, Capezzuto P, Cramarossa F (1979) Inorganic volatile fluorides obtained from electrical decomposition of sulfur hexafluoride in a quartz tube. J Fluor Chem 14(2):115–129CrossRefGoogle Scholar
  7. 7.
    Hirooka K, Shirai M (1980) Thermal characteristics of SF6. J Chem Soc Jpn 2(1):165–169Google Scholar
  8. 8.
    Pfender E (1978) Electric arcs and arc gas heaters. Gaseous Electron 1(1):291–398CrossRefGoogle Scholar
  9. 9.
    Xie C, Shang S, Tan X et al (2013) Electrode erosion in high pressure and high current discharges. High Power Laser Part Beams 25(9):2181–2185CrossRefGoogle Scholar
  10. 10.
    Frie W (1967) Berechnung der Gaszusammensetzung und der Materialfunk tionen von SF6. Zeitschrift für Physik A Hadrons Nuclei 201(3):269–294Google Scholar
  11. 11.
    Hai W, Rong Z, Chijie Z (2019) Thermal variation of electric field sensor bias caused by anisotropy of LiNbO3. Appl Phys Lett 114(14):143501CrossRefGoogle Scholar
  12. 12.
    Chijie Z, Zezhong W, Rong Z et al (2019) Discharge characteristics of different lightning air terminals under composite voltages. Plasma Sci Technol 21:051001CrossRefGoogle Scholar
  13. 13.
    Chu FY, Boggs SA, Law CK (1981) Studies of power arc fault in SF6 insulated equipment. IEEE Trans Power Appar Syst 100(1):114–120CrossRefGoogle Scholar
  14. 14.
    Fukuda S (1969) Current-carrying and short-circuit tests on EHV cables insulated with SF6 gas. IEEE Trans Power Appar Syst 88(2):147–156CrossRefGoogle Scholar
  15. 15.
    Vijk AK (1976) The nature of metal-electrodes/SF6 reactions in SF6 decomposition due to direct-current interruption under simulated circuit-breaker conditions. IEEE Trans Electr Insul 11(4):157–160CrossRefGoogle Scholar
  16. 16.
    Boudene C, Cluet JL, Keib G et al (1974) Identification and study of some properties of compounds resulting from the decomposition of SF6 under the effect of electrical arcing in circuit⁃breakers. Rev Gen Electr 1(1):45–78Google Scholar
  17. 17.
    Hirooka K, Kuwahara H, Noshiro M et al (2010) Decomposition products of SF6 gas by high-current arc and their reaction mechanism. Electr Eng Jpn 95(6):14–19CrossRefGoogle Scholar
  18. 18.
    Lampe J, Latour Słowikowska H, Słowikowski J (2013) Study on metal fluoride products formation caused by the electric arc in SF6. Gaseous Dielectr III 4(1):433–438CrossRefGoogle Scholar
  19. 19.
    Chu FY, Lutz F (1983) SF6 decomposition in a plasma arc for various electrode materials. In: Proceedings of 6th international symposium on plasma chemistry, p 231Google Scholar
  20. 20.
    Kulsetas J, Rein A, Holt PA (1979) Arcing in SF6 insulated equipment decomposition products and pressure rise. In: Proceedings of the Nordic insulation symposium, p 78Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jun Deng
    • 1
  • Zhicheng Xie
    • 1
    Email author
  • Hai Qian
    • 1
  • Wenhao Lu
    • 1
  • Weidong Ding
    • 2
  1. 1.Extra High Voltage-Power Transmission Company of China Southern Power GridGuangzhouChina
  2. 2.Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations