Evaluation of dielectric breakdown strength of transformer oil with BaTiO3 and NiFe2O4 nanoparticles

  • Sherif S. M. GhoneimEmail author
  • Nehmdoh A. Sabiha
  • Mahmoud M. Hessien
  • Ahmad Alahmadi
Original Paper


In this paper, the dielectric characteristics of the power transformer oil are enhanced by dispersing newly synthesized nanoparticles. Two nanocrystalline powders, barium titanate (BaTiO3) and nickel ferrite (NiFe2O4), are synthesized via the tartaric acid precursor method. The change in the crystal structure, crystalline size, and microstructure of the synthesized nanoparticles as a function of annealing temperatures are characterized using X-ray diffraction and transmission electron microscope. These nanoparticles are mixed with the transformer oil considering different concentrations such as 25, 50, and 75 mg/l where the sonicator is used to disperse the nanoparticles in the oil samples. The dielectric breakdown strength is tested based on IEC standard. The results confirm the efficiency of the NiFe2O4 than BaTiO3 for enhancing the dielectric characteristics of the power transformer oils.


Power transformers Nanoparticles Dielectric characteristics Transformer oils 



  1. 1.
    Katiyar A, Dhar P, Nandi T, SirishaMaganti L, Das SK (2016) Enhanced breakdown performance of Anatase and Rutile titania based nano-oils. IEEE Trans Dielectr Electr Insul 23(6):3494–3503CrossRefGoogle Scholar
  2. 2.
    Ibrahim ME, Abd-Elhady AM, Izzularab MA (2016) Effect of nanoparticles on transformer oil breakdown strength: experiment and theory. IET Sci Meas Technol 10(8):839–845CrossRefGoogle Scholar
  3. 3.
    Sima W, Shi J, Yang Q, Huang S, Cao X (2015) Effects of conductivity and permittivity of nanoparticle on transformer oil insulation performance: experiment and theory. IEEE Trans Dielectr Electr Insul 22(1):380–390CrossRefGoogle Scholar
  4. 4.
    Cavallini A, Karthik R, Negri F (2015) The effect of magnetite, graphene oxide and silicone oxide nanoparticles on dielectric withstand characteristics of mineral oil. IEEE Trans Dielectr Electr Insul 22(5):2592–2600CrossRefGoogle Scholar
  5. 5.
    Du BX, Li XL, Li J (2015) Thermal conductivity and dielectric characteristics of transformer oil filled with BN and Fe3O4 nanoparticles. IEEE Trans Dielectr Electr Insul 22(5):2530–2536CrossRefGoogle Scholar
  6. 6.
    Dhar P, Katiyar A, SirishaMaganti L, Pattamatta A, Das SK (2016) Superior dielectric breakdown strength of graphene and carbon nanotube infused nano-oils. IEEE Trans Dielectr Electr Insul 23(2):943–956CrossRefGoogle Scholar
  7. 7.
    Atiya EG, Mansour DA, Khattab RM, Azmy AM (2015) Dispersion behavior and breakdown strength of transformer oil filled with TiO2 nanoparticles. IEEE Trans Dielectr Electr Insul 22(5):2463–2472CrossRefGoogle Scholar
  8. 8.
    Raymon A, Sakthibalan S, Cinthal C, Subramaniaraja R, Yuvaraj M (2016) Enhancement and comparison of nano-ester insulating fluids. IEEE Trans Dielectr Electr Insul 23(2):892–900CrossRefGoogle Scholar
  9. 9.
    Sima W, Cao X, Yang Q, Song H, Shi J (2014) Preparation of three transformer oil-based nanofluids and comparison of their impulse breakdown characteristics. Nano Sci Nano Technol Lett 6:250–256CrossRefGoogle Scholar
  10. 10.
    Lv Y, Ge Y, Li Ch, Wang Q, Zhou Y, Qi B, Yi K, Chen X, Yuan J (2016) Effect of TiO2 nanoparticles on streamer propagation in transformer oil under lightning impulse voltage. IEEE Trans Dielectr Electr Insul 23(4):2110–2115CrossRefGoogle Scholar
  11. 11.
    Liu D, Zhou Y, Yang Y, Zhang L (2016) Characterization of high performance AlN nanoparticle-based transformer oil nanofluids. IEEE Trans Dielectr Electr Insul 23(5):2757–2767CrossRefGoogle Scholar
  12. 12.
    Lv Y, Zhou Y, Li Ch, Ge Y, Qi B (2016) Creeping discharge characteristics of nanofluid-impregnated pressboards under AC stress. IEEE Trans Plasma Sci 44(11):2589–2593CrossRefGoogle Scholar
  13. 13.
    Du Y, Lv Y, Li C, Chen M, Zhou J, Li X, Zhou Y, Tu Y (2011) Effect of electron shallow trap on breakdown performance of transformer oil-based nanofluids. J Appl Phys 110:104104CrossRefGoogle Scholar
  14. 14.
    Mansour DA, Elsaeed AM, Izzularab MA (2016) The role of interfacial zone in dielectric properties of transformer oil-based nanofluids. IEEE Trans Dielectr Electr Insul 23(6):3364–3372CrossRefGoogle Scholar
  15. 15.
    Kakihana M (1996) Invited review “sol–gel” preparation of high temperature superconducting oxides. J Sol-Gel Sci Technol 6:7–55CrossRefGoogle Scholar
  16. 16.
    Li F, Liu Y, Sun Z, Liu R, Kou C, Zha Y, Zhao D (2011) Facile preparation of porous LaFeO3 nanomaterial by self-combustion of ionic liquids. Mater Lett 65:406–408CrossRefGoogle Scholar
  17. 17.
    Liu T, Xu Y (2011) Synthesis of nanocrystalline LaFeO3 powders via glucose sol–gel route. Mater Chem Phys 129:1047–1050CrossRefGoogle Scholar
  18. 18.
    Azizi A, Sadrnezhaad SK (2010) Effects of annealing on phase evolution, microstructure and magnetic properties of mechanically synthesized nickel-ferrite. Ceram Int 36:2241–2245CrossRefGoogle Scholar
  19. 19.
    Hessien M (2008) Synthesis and characterization of lithium ferrite by oxalate precursor route. J Magn Magn Mater 320:2800–2807CrossRefGoogle Scholar
  20. 20.
    Hessien MM, Mersal GAM, Mohsen Q, Alosaimi D (2017) Structural, magnetic and sensing properties of lanthanum ferrite via facile sol gel oxalate precursor route. J Mater Sci: Mater Electron 28(5):4170–4178Google Scholar
  21. 21.
    IEC 60060-1 (2010) High-voltage test techniques—Part 1: General definitions and test requirements, 3rd edn. 2002-10Google Scholar
  22. 22.
    Jariyanurat K, Potivejkul S, Pattanadech N, Chotigo S (2017) Dielectric properties of natural ester based nanofluid. In: 19th IEEE International Conference on Dielectric Liquids (ICDL), Manchester, UK, 25–29 June 2017Google Scholar
  23. 23.
    Baur M, Pompili M (2014) Pre-energizing effect on breakdown voltage test for insulating liquids. In: 2014 IEEE international conference on liquid dielectrics, Bled, Slovenia, June 30–July 3, 2014Google Scholar
  24. 24.
    Baur M, Knauel J, Calcara L, Pompili M (2017) Insulating liquids breakdown voltage determination: test method efficiency. In: 19th IEEE international conference on dielectric liquids (ICDL), Manchester, UK, 25–29 June, 2017Google Scholar
  25. 25.
    Ghani SA, Muhamad NA, Chairu IS, Jamri N (2016) A study of moisture effects on the breakdown voltage and spectral characteristics of mineral and palm oil-based insulation oils. ARPN J Eng Appl Sci 11(8):5012Google Scholar
  26. 26.
    Zio E (2007) An introduction to the basics of reliability and risk analysis. World Scientific Publishing Co., Re. Ltd, SingaporeCrossRefzbMATHGoogle Scholar
  27. 27.
    Kuffel E, Zaengl WS, Kuffel J (2000) High voltage engineering: fundamentals, 2nd edn. Butterworth-Heinemann Publishing, Oxford, pp 473–479Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical Engineering Department, College of EngineeringTaif UniversityTaifSaudi Arabia
  2. 2.Electrical Engineering Department, Faculty of Industrial EducationSuez UniversitySuezEgypt
  3. 3.Electrical Engineering Department, Faculty of EngineeringMenofia UniversityShebin ElkomEgypt
  4. 4.Advanced Materials and Applied Metallurgy (AMAM Research Group), Department of Chemistry, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  5. 5.Central Metallurgical Research and Development Institute (CMRDI)HelwanEgypt

Personalised recommendations