Advertisement

B-spline neural network for real and reactive power control of a wind turbine

  • J. Maurilio Raya-Armenta
  • Jose M. Lozano-Garcia
  • Juan Gabriel Avina-Cervantes
Original Paper
  • 52 Downloads

Abstract

The reliability of a microgrid lies highly into quality and response of control schemes. This article presents a primary control to manipulate real and reactive power flow between a wind turbine and a maingrid, based on an artificial neural network using B-spline functions trained with the least mean square error algorithm. The system was modeled by differential equations to represent the mechanical turbine, induction machine, transformer, maingrid, and excitation system, which is based on a voltage source inverter. Besides, a wind pattern obtained from a Mexican meteorological station at Benito Juárez, Oaxaca, was used on the analysis. The performance of the control was verified using constant references and considering step changes on the values that produce a sudden decrease in the mechanical torque reference by 20% and simultaneously, an increase in the reactive power reference by 20%. A maximal deviation of 6% during 1.4 s and 1.67 s for the constant and step change references values was obtained. The stable state error was below 5% in the mechanical torque for both experiments. Regarding the reactive power, errors below 2% and 6% were, respectively, obtained for the analyzed cases. In both cases, the voltage magnitude had a maximal deviation of 1% with respect to the reference. The proposed strategy successfully controlled the power flow considering the 5% criterion, overcoming the nonlinearity of the wind turbine power coefficient and having a small voltage deviation.

Keywords

Wind turbine Control Power flow Neural network B-splines Least mean square error 

Notes

Acknowledgements

The authors would like to thank the Mexican Council of Science and Technology (CONACyT), M.Eng. Grant Number 472681/273064, to the Engineering Division of the Campus Irapuato-Salamanca, Universidad de Guanajuato, and to the Universidad de la Salle, Bajío by their financial support.

References

  1. 1.
    Acha E, Fuerte-Esquivel CR, Ambriz-Pérez H, Angeles-Camacho C (2004) FACTS: modeling and simulation in power networks, 1st edn. Power electronics. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Arnaltes S, Rodriguez-Amenedo JL, Montilla-DJesus ME (2018) Control of variable speed wind turbines with doubly fed asynchronous generators for stand-alone applications. Energies 11(1):26.  https://doi.org/10.3390/en11010026 CrossRefGoogle Scholar
  3. 3.
    Bidram A, Davoudi A (2012) Hierarchical structure of microgrids control system. IEEE Trans Smart Grid 3(4):1963–1976.  https://doi.org/10.1109/TSG.2012.2197425 CrossRefGoogle Scholar
  4. 4.
    Chettibi N, Mellit A, Sulligoi G, Pavan AM (2018) Adaptive neural network-based control of a hybrid ac/dc microgrid. IEEE Trans Smart Grid 9(3):1667–1679.  https://doi.org/10.1109/TSG.2016.2597006 CrossRefGoogle Scholar
  5. 5.
    Erlich I, Wilch M (2010) Primary frequency control by wind turbines. In: IEEE PES general meeting, pp 1–8.  https://doi.org/10.1109/PES.2010.5589911
  6. 6.
    Grainger JJ, Stevenson WD, Chang GW (2016) Power system analysis, 2nd edn. McGraw Hill Higher Education, New YorkGoogle Scholar
  7. 7.
    Guerrero JM, Vasquez JC, Matas J, de Vicuna LG, Castilla M (2011) Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization. IEEE Trans Ind Electron 58(1):158–172.  https://doi.org/10.1109/TIE.2010.2066534 CrossRefGoogle Scholar
  8. 8.
    Hagan MT, Demuth HB, Beale MH, De Jesús O (2014) Neural network design, 2nd edn. Martin Hagan, BostonGoogle Scholar
  9. 9.
    Hamane B, Benghanemm M, Bouzid A, Belabbes A, Bouhamida M, Draou A (2012) Control for variable speed wind turbine driving a doubly fed induction generator using fuzzy-pi control. Energy Procedia 18:476–485.  https://doi.org/10.1016/j.egypro.2012.05.059 (Terragreen 2012: Clean Energy Solutions for Sustainable Environment (CESSE))CrossRefGoogle Scholar
  10. 10.
    Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer series in statistics. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Hatziargyriou N, Asano H, Iravani R, Marnay C (2007) Microgrids. IEEE Power Energy Mag 5(4):78–94.  https://doi.org/10.1109/MPAE.2007.376583 CrossRefGoogle Scholar
  12. 12.
    Hatziargyriou ND, Jenkins N, Strbac G, Peças Lopes JA, Ruela J, Engler A, Kariniotakis GN, Oyarzabal J, Amorim A (2006) Microgrids-large scale integration of microgeneration to low voltage grids. In: Proceedings of CIGRE 2006, 41st annual session conference, pp C6–309(11). Paris, FranceGoogle Scholar
  13. 13.
    Khaledian A, Aliakbar-Golkar M (2017) Analysis of droop control method in an autonomous microgrid. J Appl Res Technol 15(4):371–377.  https://doi.org/10.1016/j.jart.2017.03.004 CrossRefGoogle Scholar
  14. 14.
    Lasseter R (2002) Microgrids. In: IEEE power engineering society winter meeting, conference proceedings (Cat. No.02CH37309), vol 1, pp 305–308.  https://doi.org/10.1109/PESW.2002.985003
  15. 15.
    Manyonge A, Ochieng PO, Oduor AO (2014) Mathematical analysis of tip speed ratio of a wind turbine and its effects on power coefficient. Int J Math Soft Comput 4:61–66.  https://doi.org/10.26708/IJMSC.2014.1.4.07 CrossRefGoogle Scholar
  16. 16.
    Marín RD (2003) Detailed analysis of a multi-pulse statcom. Ph.D. thesis, CINVESTAV, IPN, Guadalajara, MéxicoGoogle Scholar
  17. 17.
    Murillo-Perez JL, Ramirez JM (2006) Three-phase voltage stability studies embedding a statcom. In: IEEE power engineering society general meeting, pp 1–6Google Scholar
  18. 18.
    Ong CM (1998) Dynamic simulation of electric machinery using Matlab/Simulink, 1st edn. Prentice Hall, Englewood CliffsGoogle Scholar
  19. 19.
    Phillips GM (2003) Interpolation and approximation by polynomials. CMS books in mathematics. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Prabha K (1994) Power system stability and control, 1st edn. The Epri power system engineerings, 1st edn. McGraw-Hill Education, New YorkGoogle Scholar
  21. 21.
    Ragheb M, Ragheb AM (2011) Wind turbines theory–the Betz equation and optimal rotor tip speed ratio. In: Carriveau R (ed) Fundamental and advanced topics in wind power, Chap 2. InTech, Rijeka, pp 1–39.  https://doi.org/10.5772/21398 CrossRefGoogle Scholar
  22. 22.
    Ramirez JM, Murillo-Perez JL (2006) Steady-state voltage stability with statcom. IEEE Trans Power Syst 21(3):1453–1454.  https://doi.org/10.1109/TPWRS.2006.879244 CrossRefGoogle Scholar
  23. 23.
    Raya-Armenta JM, Lozano-Garcia JM, Avina-Cervantes JG (2015) Smart microgrid analysis using a neural controller as supervisor control. Master thesis, University of Guanajuato, Salamanca, MexicoGoogle Scholar
  24. 24.
    Tarafdar Hagh M, Roozbehani S, Ghasemzadeh S (2017) Dynamic reverse droop power sharing in microgrid based on neural networks. Procedia Comput Sci 120:766–779.  https://doi.org/10.1016/j.procs.2017.11.307. In: 9th international conference on theory and application of soft computing, computing with words and perception, ICSCCW 2017, 22–23 Aug 2017, Budapest, HungaryCrossRefGoogle Scholar
  25. 25.
    Teekaraman Y, Mani G (2015) Fuzzy based analysis of inverter fed micro grid in islanding operation-experimental analysis. Int J Power Electron Drive Syst (IJPEDS) 5:464CrossRefGoogle Scholar
  26. 26.
    Vandoorn TL, Vasquez JC, Kooning JD, Guerrero JM, Vandevelde L (2013) Microgrids: hierarchical control and an overview of the control and reserve management strategies. IEEE Ind Electron Mag 7(4):42–55.  https://doi.org/10.1109/MIE.2013.2279306 CrossRefGoogle Scholar
  27. 27.
    Wang W, Pottmann H, Liu Y (2006) Fitting b-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans Graph 25(2):214–238.  https://doi.org/10.1145/1138450.1138453 CrossRefGoogle Scholar
  28. 28.
    Wang Y, Li Y, Cao Y, Tan Y, He L, Han J (2018) Hybrid ac/dc microgrid architecture with comprehensive control strategy for energy management of smart building. Int J Electr Power Energy Syst 101:151–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de la Salle, BajíoLeónMexico
  2. 2.Universidad de GuanajuatoGuanajuatoMexico

Personalised recommendations