Electrical Engineering

, Volume 100, Issue 1, pp 177–193 | Cite as

Nonlinear speed sensorless control of a surface-mounted PMSM based on a Thau observer

  • Paul J. Campos
  • Luis N. Coria
  • Leonardo Trujillo
Original Paper

Abstract

This paper presents an alternative to solve the speed sensorless control of a surface-mounted synchronous motor based on localization of compact invariant sets (LCIS) and the Thau observer. Through the LCIS, the domain of attraction of the system dynamics is analyzed, allowing to obtain global knowledge about its operational bounds and its associated Lipschitz constant. Necessary and sufficient conditions for existence of a stable observer are fulfilled by two inequalities, providing two different sets of stability conditions and, as a consequence, two observers are proposed. The observer design is based on the availability of stator currents for measurement and stator voltages for feedback in a rotating reference frame. The designed observers are able to work in a wide speed range and also estimate rotor position accurately, even at low speed and zero-crossing speed. Simulations demonstrate that the observers can estimate both rotor speed and position. Additionally, the observers are experimentally validated with the Technosoft\(^{\textregistered }\) MCK28335 platform. Results show that the observers can solve sensorless problem in a real-world scenario.

Keywords

Surface-mounted PMSM Speed sensorless control Thau observer MCK28335 platform 

Notes

Acknowledgements

This work was supported by TecNM Project 5153.13-P, PRODEP Research Group ITTIJ-CA-6 and CONACYT Project 178323. We are pleased to acknowledge the helpful and insightful comments of the reviewers.

References

  1. 1.
    Krause PC, Wasynczuk O, Sudhoff SD (2002) Analysis of electric machinery and drive systems, 3rd edn. Institute of Electrical & Electronics Engineers (IEEE)Google Scholar
  2. 2.
    Chau KT, Chan CC, Liu C (2008) Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans Ind Electron 55(6):2246–2257CrossRefGoogle Scholar
  3. 3.
    Verrelli CM (2012) Synchronization of permanentmagnet electric motors: new nonlinear advanced results. Nonlinear Anal Real World Appl 13(1):395–409MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Accetta A, Cirrincione M, Pucci M (2012) TLS EXIN based neural sensorless control of a high dynamic PMSM. Control Eng Pract 20(7):725–732CrossRefGoogle Scholar
  5. 5.
    Acarnley PP, Watson JF (2006) Review of position-sensorless operation of brushless permanent-magnet machines. IEEE Trans Ind Electron 53(2):352–362CrossRefGoogle Scholar
  6. 6.
    Gümüş B, Özdemir M (2005) Sensorless vector control of a permanent magnet synchronous motor with fuzzy logic observer. Electr Eng 88(5):395–402Google Scholar
  7. 7.
    Chen SY, Luo Y, Pi YG (2015) Pmsm sensorless control with separate control strategies and smooth switch from low speed to high speed. ISA Trans 58:650–658CrossRefGoogle Scholar
  8. 8.
    Yu J, Chen B, Yu H, Gao J (2011) Adaptive fuzzy tracking control for the chaotic permanent magnet synchronous motor drive system via backstepping. Nonlinear Anal Real World Appl 12(1):671–681MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zaher AA (2008) A nonlinear controller design for permanent magnet motors using a synchronization-based technique inspired from the Lorenz system. Chaos Interdiscip J Nonlinear Sci 18(1):013111MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Coria LN, Starkov KE (2009) Bounding a domain containing all compact invariant sets of the permanent-magnet motor system. Commun Nonlinear Sci Numer Simul 14(11):3879–3888MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zribi M, Oteafy A, Smaoui N (2009) Controlling chaos in the permanent magnet synchronous motor. Chaos Solitons Fractals 41(3):1266–1276CrossRefGoogle Scholar
  12. 12.
    Ahmad M (2010) High performance AC drives: modelling, analysis and control. Springer, BerlinCrossRefGoogle Scholar
  13. 13.
    Marino R, Tomei P, Verrelli CM (2010) Induction motor control design. Springer, LondonCrossRefMATHGoogle Scholar
  14. 14.
    Bifaretti S, Iacovone V, Rocchi A, Tomei P, Verrelli CM (2012) Nonlinear speed tracking control for sensorless pmsms with unknown load torque: from theory to practice. Control Eng Pract 20(7):714–724CrossRefGoogle Scholar
  15. 15.
    Holtz J (2006) Sensorless control of induction machines: with or without signal injection. IEEE Trans Ind Electron 53(1):7–30CrossRefGoogle Scholar
  16. 16.
    Chi W-C, Cheng M-Y (2014) Implementation of a sliding-mode-based position sensorless drive for highspeed micro permanent-magnet synchronous motors. ISA Trans 53(2):444–453CrossRefGoogle Scholar
  17. 17.
    Karabacak M, Eskikurt HI (2011) Speed and current regulation of a permanent magnet synchronous motor via nonlinear and adaptive backstepping control. Math Comput Modell 53(9–10):2015–2030CrossRefMATHGoogle Scholar
  18. 18.
    Karabacak M, Eskikurt HI (2012) Design, modelling and simulation of a new nonlinear and full adaptive backstepping speed tracking controller for uncertain PMSM. Appl Math Modell 36(11):5199–5213MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Shi H (2011) A novel scheme for the design of backstepping control for a class of nonlinear systems. Appl Math Model 35(4):1893–1903MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Li W, Lin W, Liu PX (2007) Speed tracking control based on backstepping of permanent magnet synchronous motor with uncertainty. In: International conference on mechatronics and automation. IEEE. doi: 10.1109/icma.2007.4304154
  21. 21.
    Rebouh S, Kaddouri A, Abdessemed R, Haddoun A (2011) Adaptive backstepping speed control for a permanent magnet synchronous motor. In: International conference on management and service science. IEEE. doi: 10.1109/icmss.2011.5999372
  22. 22.
    Oksuztepe E, Omac Z, Kurum H (2013) Sensorless vector control of PMSM with non-sinusoidal flux using observer based on FEM. Electr Eng 96(3):227–238CrossRefGoogle Scholar
  23. 23.
    Alsofyani IM, Idris NRN (2013) A review on sensorless techniques for sustainable reliability and efficient variable frequency drives of induction motors. Renew Sustain Energy Rev 24:111–121CrossRefGoogle Scholar
  24. 24.
    Tomei P, Verrelli CM (2011) Observer-based speed tracking control for sensorless permanent magnet synchronous motors with unknown load torque. IEEE Trans Autom Control 56(6):1484–1488MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Shah D, Espinosa-Pérez G, Ortega R, Hilairet M (2012) An asymptotically stable sensorless speed controller for non-salient permanent magnet synchronous motors. Int J Robust Nonlinear Control 24(4):644–668MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Alahakoon S, Fernando T, Trinh H, Sreeram V (2013) Unknown input sliding mode functional observers with application to sensorless control of permanent magnet synchronous machines. J Frankl Inst 350(1):107–128MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Tomei P, Verrelli CM (2008) A nonlinear adaptive speed tracking control for sensorless permanent magnet step motors with unknown load torque. Int J Adapt Control Signal Process 22(3):266–288MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Thau FE (1973) Observing the state of non-linear dynamic systems. Int J Control 17(3):471–479CrossRefMATHGoogle Scholar
  29. 29.
    Starkov KE, Coria LN, Aguilar LT (2012) On synchronization of chaotic systems based on the thau observer design. Commun Nonlinear Sci Numer Simul 17(1):17–25MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Krishchenko AP, Starkov KE (2006) Localization of compact invariant sets of the Lorenz system. Phys Lett A 353(5):383–388MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Starkov KE, Coria LN (2013) Global dynamics of the Kirschner–Panetta model for the tumor immunotherapy. Nonlinear Anal Real World Appl 14(3):1425–1433MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Mahboobi SH, Shahrokhi M, Pishkenari HN (2006) Observer-based control design for three well-known chaotic systems. Chaos Solitons Fractals 29(2):381–392MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Kim W, Shin D, Chung CC (2012) The Lyapunov-based controller with a passive nonlinear observer to improve position tracking performance of microstepping in permanent magnet stepper motors. Automatica 48(12):3064–3074MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de Ingeniería Eléctrica y ElectrónicaTecnológico Nacional de México-Instituto Tecnológico de TijuanaTijuanaMexico

Personalised recommendations