Electrical Engineering

, Volume 99, Issue 3, pp 817–826 | Cite as

Study on the self-integration of a Rogowski coil used in the measurement of partial discharges pulses

  • Mónica V. Rojas Moreno
  • Guillermo Robles
  • Ricardo Albarracín
  • Jorge Ardila Rey
  • Juan M. Martínez Tarifa
Original Paper

Abstract

The maintenance of high-voltage power systems requires the determination of the amplitude and waveforms of fast current pulses that commonly occur in electric equipment. These high-frequency pulses may arise from different sources being partial discharges one of the most important events measured to determine the insulation status of electrical assets. This paper is a step forward in the modelling of Rogowski coils, which are commonly used to measure these pulses. This study was performed by means of a simplified model based on lumped electrical parameters. The model was simulated in Simulink and validated by measuring partial discharges (PD) in two different electrical insulation systems. The validation corroborates that the electrical model can be used to study the time and frequency responses of Rogowski coils with different number of turns and dimensions to obtain a configuration that fits the needs of the designer concerning the type of pulses that she/he wishes to measure. The paper also hints that changing the geometric parameters of the coil can be determinant to simplify the integration of pulses, so the Rogowski coil can be used to measure other type of pulses with different frequency spectra, such as lightning strikes, electrical arcs and post-arc phenomena, switching operations of circuit breakers and gas-insulated switchgears and electromagnetic pulses in general.

Keywords

Rogowski coil High-frequency pulses Partial discharges Self-integration 

References

  1. 1.
    Naidu MS, Kamaraju V (2009) High voltage Engineering. MacGraw-Hill, New DelhiGoogle Scholar
  2. 2.
    Kaiser KL (2005) Electromagnetic compatibility handbook. CRC Press, USAGoogle Scholar
  3. 3.
    Djokic B (2010) Calibration of rogowski coils at frequencies up to 10 khz using digital sampling. IEEE Trans Instrum Meas 59(5):1303–1308CrossRefGoogle Scholar
  4. 4.
    Tumanski S (2007) Induction coil sensors: a review. Meas Sci Technol 18(3):R31CrossRefGoogle Scholar
  5. 5.
    Robles G, Martínez JM, Rojas M, Sanz J (2008a) Inductively coupled probe for the measurement of partial discharges. Rev Sci Instrum 79(5):055104–055105CrossRefGoogle Scholar
  6. 6.
    Zhang Q, Zhu J, Jia J, Tao F, Yang L (2006) Design of a current transducer with a magnetic core for use in measurements of nanosecond current pulses. Meas Sci Technol 17(4):895CrossRefGoogle Scholar
  7. 7.
    Dyer SA (2001) Survey of instrumentation and measurement. Wiley, New YorkGoogle Scholar
  8. 8.
    Samimi MH, Mahari A, Farahnakian MA, Mohseni H (2015) The Rogowski coil principles and applications: A review. IEEE Sens J 15(2):651–658CrossRefGoogle Scholar
  9. 9.
    Hashmi GM, Lehtonen M, Nordman M (2011) Calibration of on-line partial discharge measuring system using rogowski coil in covered-conductor overhead distribution networks. Sci Meas Technol IET 5(1):5–13. doi:10.1049/iet smt.2009.0124.ISSN:1751-8822
  10. 10.
    Argüeso M, Robles G, Sanz J (2005) Implementation of a rogowski coil for the measurement of partial discharges. Rev Sci Instrum 76:65107CrossRefGoogle Scholar
  11. 11.
    Robles G, Martinez JM, Sanz J, Tellini B. Zappacosta C and Rojas M (2008b) Designing and tuning an air-cored current transformer for partial discharges pulses measurements. In: Instrumentation and Measurement Technology Conference Proceedings. IMTC 2008. IEEE, pp 2021–2025Google Scholar
  12. 12.
    Shafiq M, Kutt L, Lehtonen M, Nieminen T, Hashmi M (2013) Parameters identification and modeling of high-frequency current transducer for partial discharge measurements. IEEE Sens J 13(3):1081–1091CrossRefGoogle Scholar
  13. 13.
    Marracci M, Tellini B (2016) Analysis of precision Rogowski coil via analytical method and effective cross section parameter. In: 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings. IEEE, pp 1–5Google Scholar
  14. 14.
    Metwally IA (2010) Self-integrating rogowski coil for high-impulse current measurement. IEEE Trans Instrum Meas 59(2):353–360CrossRefGoogle Scholar
  15. 15.
    Ward DA, Exon JLT (1993) Using rogowski coils for transient current measurements. Eng Sci Educ J 2(3):105–113. ISSN: 0963-7346Google Scholar
  16. 16.
    Ramo S, Whinnery J, Van Duzer T (1993) Fields and waves in communication electronics, 3rd edn. Wiley, New YorkGoogle Scholar
  17. 17.
    Cooper J (1963) On the high-frequency response of a rogowski coil. J Nuclear Energy 5:285–289CrossRefMATHGoogle Scholar
  18. 18.
    Dubickas V, Edin H (2007) High frequency model of the rogowski coil with a small number of turns. IEEE Trans Instrum Meas 56:2284CrossRefGoogle Scholar
  19. 19.
    Krauss JD (1986) Electromagnetism. McGrawHill, USAGoogle Scholar
  20. 20.
    Grover FW (1973) Inductance Calculations. Dover Phoenix, New YorkGoogle Scholar
  21. 21.
    High Voltage Test Techniques (2000) Partial discharge measurements. IEC 60270, 3.0 ednGoogle Scholar
  22. 22.
    Tyco Electronics Corporations (2016) Bnc plug termination 50 ohms. DatasheetGoogle Scholar
  23. 23.
    Kreuger FH (1989) Partial discharge detection in high-voltage equipment. Butterworths, LondresGoogle Scholar
  24. 24.
    Bartnikas R, McMahon EJ (1979) Engineering dielectrics, vol I. Corona measurements and interpretation, ASTM, PhiladelphiaGoogle Scholar
  25. 25.
    Kan SH (2003) Metric and models in software quality engineering, 2nd edn. Pearson Education Inc, BostonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mónica V. Rojas Moreno
    • 1
  • Guillermo Robles
    • 1
  • Ricardo Albarracín
    • 1
    • 2
  • Jorge Ardila Rey
    • 1
    • 3
  • Juan M. Martínez Tarifa
    • 1
  1. 1.Department of Electrical EngineeringUniversidad Carlos III de MadridLeganésSpain
  2. 2.Department of Electrical, Electronic and Automation Engineering and Applied PhysicsUniversidad Politécnica de MadridMadridSpain
  3. 3.Department of Electrical EngineeringUniversidad Técnica Federico Santa MaríaSantiago de ChileChile

Personalised recommendations