Electrical Engineering

, Volume 98, Issue 2, pp 121–131 | Cite as

Fault detection and fault-tolerant control of power converter fed PMSM

  • Mongi MoujahedEmail author
  • Hechmi Ben Azza
  • Khaled Frifita
  • Mohamed Jemli
  • Mohamed Boussak
Original Paper


In this paper, an investigation of inverter fault-tolerant field-oriented control for permanent magnet synchronous motor (PMSM) with loss of one transistor or loss of one phase is presented. The basic idea of this design consists in incorporating a fourth legs inverter, with the same topology of the three legs. In this case of fault-tolerant inverter, a redundant leg is added that replaces the faulted leg. The proposed inverter provides tolerance to open circuit fault of the switching devices. The detection of faulty legs is based only on the output inverter currents measurement. Experimental results show that the method is able to detect and isolate the open switch or the open phase faults in PMSM. In our case, the fault detection and isolation block is based on the current signals measured and the maximum threshold they exceed that in case of fault. The experimental implementation is carried out on powerful dSpace DS1103 controller board based on the digital signal processor.


Permanent magnet synchronous machine (PMSM) Fault-tolerant control (FTC) Field-oriented control (FOC) Fault detection and isolation (FDI) 

List of symbols


Two-axis synchronous frame quantities

\(\alpha \), \(\beta \)

Two-axis stationary frame quantities

\({V}_{d} ,{V}_{ q}\)

d-and q-axis components of stator voltage

\({i}_{d} ,{i}_{ q}\)

d-and q-axis stator current on rotating frame


Number of pole pairs


Armature winding resistance

\({L}_{ d} ,{L}_{ q}\)

d-and q-axis stator self inductances


EMF constant


Torque constant

\({T}_\mathrm{e}, {T}_\mathrm{l}\)

Electromagnetic and load torque

\(\widehat{\Phi }_{\mathrm{m}}\)

Peak permanent magnet flux linkage


Rotor inertia and viscous friction

\({\theta }_{\mathrm{r}} ,{\omega }_{\mathrm{r}}\)

Rotor position and angular velocity at electrical


  1. 1.
    Saidura R, Mekhilef S, Ali MB, Safari A, Mohammed HA (2012) Applications of variable speed drive (VSD) in electrical motors energy savings. Renew Sustain Energy Rev 16:543–550CrossRefGoogle Scholar
  2. 2.
    Boussak M (2005) Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive. IEEE Trans Power Electron 20(6):1413–1421CrossRefGoogle Scholar
  3. 3.
    Gulez K, Adam A, Buzcu İE, Pastac H (2007) Using passive filters to minimize torque pulsations and noises in surface PMSM derived field oriented control. Simul Model Pract Theory 15(8):989–1001CrossRefGoogle Scholar
  4. 4.
    Maiti S, Chakraborty C, Sengupta S (2009) Simulation studies on model reference adaptive controller based speed estimation technique for the vector controlled permanent magnet synchronous motor drive. Simul Model Pract Theory 17(4):585–596CrossRefGoogle Scholar
  5. 5.
    Welchko BA, Jahns TM, Hiti S (2002) IPM synchronous machine drive response to a single-phase open circuit fault. IEEE Trans Power Electron 17(5):764–771CrossRefGoogle Scholar
  6. 6.
    Bolognani S, Zordan M, Zigliotto M (2000) Experimental fault-tolerant control of a PMSM drive. IEEE Trans Ind Electron 47(5):1134–1141CrossRefGoogle Scholar
  7. 7.
    Khan MASK, Rahman MA (2009) Development and implementation of a novel fault diagnostic and protection technique for IPM motor drives. IEEE Trans Ind Electron 56(1):85–92CrossRefGoogle Scholar
  8. 8.
    Azza HB, Jemli M, Boussak M, Gossa M (2011) High performance sensorless speed vector control of SPIM drives with on-line stator resistance estimation. Simul Model Pract Theory 19(1):271–282CrossRefGoogle Scholar
  9. 9.
    Welchko BA, Lipo TA, Jahns TM, Schulz SE (2004) Fault tolerant three-phase AC motor drive topologies: a comparison of features, costs, and limitations. IEEE Trans Power Electron 19(4):1108–1116CrossRefGoogle Scholar
  10. 10.
    Riberio RLA, Jacobina CB, da Silva ERC, Lima AMN (2004) Fault-tolerant voltage-fed PWM inverter AC motor drive systems. IEEE Trans Ind Electron 51(2):439–446CrossRefGoogle Scholar
  11. 11.
    Errabelli RR, Mutschler P (2012) Fault-tolerant voltage source inverter for permanent magnet drives. IEEE Trans Power Electron 27(2):500–508CrossRefGoogle Scholar
  12. 12.
    Choi C, Lee W (2012) Design and evaluation of voltage measurement-based sectoral diagnosis method for inverter open switch faults of permanent magnet synchronous motor drives. IET Electron Power Appl 6(8):526–532MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ribeiro RLDA, Jacobina CB, da Silva ERC, Lima AMN (2003) Fault detection of open-switch damage in voltage-fed PWM motor drive systems. IEEE Trans Power Electron 18(2):587–593CrossRefGoogle Scholar
  14. 14.
    El-Refaie AM (2011) Fault-tolerant permanent magnet machines: a review. IET Electron Power Appl 5(1):59–74CrossRefGoogle Scholar
  15. 15.
    Sun Z, Wang J, Howe D, Jewell G (2008) Analytical prediction of the short-circuit current in fault-tolerant permanent-magnet machines. IEEE Trans Ind Electron 55(12):4210–4217CrossRefGoogle Scholar
  16. 16.
    Liu W, Liu L, Chung I-Y, Cartes DA, Zhang Wei (2012) Modeling and detecting the stator winding fault of permanent magnet synchronous motors. Simul Model Pract Theory 27:1–16CrossRefGoogle Scholar
  17. 17.
    Jha RK, Lingeswaran K (2013) Fault-tolerant voltage source inverter for permanent magnet synchronous motor. Int J Adv Res Electr Electron Instrum Eng 2(10):426–435Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mongi Moujahed
    • 1
    Email author
  • Hechmi Ben Azza
    • 1
  • Khaled Frifita
    • 1
  • Mohamed Jemli
    • 1
  • Mohamed Boussak
    • 2
  1. 1.Unité de recherche en commande, surveillance et sûreté de fonctionnement des systèmes (C3S)Ecole Nationale Supérieure d’Ingénieurs de Tunis (ENSIT)TunisTunisia
  2. 2.Laboratoire des Sciences de l’Information et des Systèmes (LSIS)CNRS UMR 6168, Centrale Marseille Recherche et Technologies (CMRT), Ecole Centrale Marseille (ECM)Marseille Cedex 20France

Personalised recommendations