Electrical Engineering

, Volume 90, Issue 6, pp 443–453 | Cite as

Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing

  • M. Siripruchyanun
  • W. Jaikla
Original Paper


This article presents a basic current-mode building block for analog signal processing, namely current controlled current conveyor transconductance amplifier (CCCCTA). Its parasitic resistance at current input port can be controlled by an input bias current. It is very suitable for use in current-mode signal processing, which is becoming more popular than voltage mode. The proposed element is realized in a bipolar technology and the performances are examined through PSPICE simulations, displaying usabilities of the new active element. The CCCCTA performs tuning over a wide current range. The description includes some examples as a current-mode universal biquad filter, voltage-mode universal biquad filter, a grounded inductance simulator, a current-mode multiplier/divider and an oscillator. They occupy only a single CCCCTA.


CCCCTA Current-controlled Current-mode Voltage-mode 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Toumazou C, Lidgey FJ, Haigh DG (1990) Analogue IC design: the current-mode approach. Peter Peregrinus, LondonGoogle Scholar
  2. 2.
    Bhaskar DR, Sharma VK, Monis M, Rizvi SMI (1999) New current-mode universal biquad filter. Microelectron J 30: 837–839CrossRefGoogle Scholar
  3. 3.
    Smith KC, Sedra A (1968) The current conveyor-a new circuit building block. IEEE Proc 56: 1368–1369CrossRefGoogle Scholar
  4. 4.
    Acar C, Ozoguz S (1999) A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectron J 30: 157–160CrossRefGoogle Scholar
  5. 5.
    Biolek D (2003) CDTA—building block for current-mode analog signal processing. In: Proceedings of the European conference on circuit theory and design 2003—ECCTD’03, Krakow, pp 397–400Google Scholar
  6. 6.
    Prokop R, Musil V (2005) New modern circuit block CCTA and some its applications. In: The fourteenth international scientific and applied science conference—Electronics ET’2005, pp 93–98Google Scholar
  7. 7.
    Prokop R, Musil V (2005) Modular approach to design of modern circuit blocks for current signal processing and new device CCTA. In: Proceedings of the seventh IASTED international conference on signal and image processing, Anaheim, pp 494–499Google Scholar
  8. 8.
    Prokop R, Musil V (2005) CCTA-a new modern circuit block and its internal realization. In: Electronic devices and systems IMAPS CZ international conference 2005, Brno, pp 89–93Google Scholar
  9. 9.
    Fabre A, Saaid O, Wiest F, Boucheron C (1995) Current controllable bandpass filter based on translinear conveyors. Electron Lett 31: 1727–1728CrossRefGoogle Scholar
  10. 10.
    Abouda HZ, Fabre A (2006) New high-value floating controlled resistor in CMOS technology. IEEE Trans Instrum Meas 51: 1017–1020CrossRefGoogle Scholar
  11. 11.
    Grebene A (1984) Bipolar and MOS analog integrated circuit design. Wiley, New YorkGoogle Scholar
  12. 12.
    Frey DR (1993) Log-domain filtering: an approach to current-mode filtering. IEE Proc Circuit Devices Syst 140: 406–416CrossRefGoogle Scholar
  13. 13.
    Ibrahim MA, Minaei S, Kuntman HA (2005) A 22.5 MHz current-mode KHN-biquad using differential voltage current conveyor and grounded passive elements. Int J Electron Commun (AEU) 59: 311–318CrossRefGoogle Scholar
  14. 14.
    Hou CL, Huang CC, Lan YS, Shaw JJ, Chang CM (1999) Current-mode and voltage-mode universal biquads using a single current-feedback amplifier. Int J Electron 86: 929–932CrossRefGoogle Scholar
  15. 15.
    Maruyama Y, Hyogo A, Sekine K (2002) A digitally programmable CMOS biquad filter using current-mode integrators. IEICE Trans fundam E85-A: 316–323Google Scholar
  16. 16.
    Chandrika D, Jaime RA, Antonio LM, Ramon C (2005) Novel architectures of class AB CMOS mirrors with programmable gain. Analog Integr Circuits Signal Process 42: 197–202CrossRefGoogle Scholar
  17. 17.
    Sedighi B, Bakhtiar MS (2007) Variable gain current mirror for high-speed applications. IEICE Electron Exp 4: 277–281CrossRefGoogle Scholar
  18. 18.
    Pena-Finol JS, Connelly JA (2001) Novel lossless floating immittance simulator employing only two FTFNs. Analog Integr Circuits Signal Process 29: 233–235CrossRefGoogle Scholar
  19. 19.
    Khan IA, Zaidi MH (2003) A novel ideal floating inductor using translinear conveyors. Active Passiv Electron Compon 26: 87–89CrossRefGoogle Scholar
  20. 20.
    Wiegerink RJ (1991) A CMOS four-quadrant analog current multiplier. In: IEEE international symposium on circuits and systems, vol 4, pp 244–247Google Scholar
  21. 21.
    Surakampontorn W, Riewruja V, Kumwachara K, Surawatpunya C, Anuntahirunrat K (1999) Temperature-insensitive voltage-to-current converter and its applications. IEEE Trans Instrum Meas 48: 1270–1277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Teacher Training in Electrical Engineering, Faculty of Technical EducationKing Mongkut’s Institute of Technology North BangkokBangkokThailand
  2. 2.Electric and Electronic Program, Faculty of Industrial TechnologySuan Sunandha Rajabhat UniversityBangkokThailand

Personalised recommendations