Advertisement

Electrical Engineering

, Volume 90, Issue 5, pp 361–377 | Cite as

Linear and fuzzy control solutions for tape drives

  • Radu-Emil PrecupEmail author
  • Wah Soon Lee
  • Machavaram Venkata Calapathy Rao
  • Zsuzsa Preitl
Original Paper

Abstract

This paper suggests new linear and fuzzy control solutions for tape drive-based transport systems. The linear control solution involves a cascade control system with inner state-feedback controller and outer PI controllers. The fuzzy control solution employs a Takagi–Sugeno fuzzy controller to schedule 11 separately designed linear controllers depending on measured take-up reel radius. Two simulation scenarios illustrate the control system performance enhancement ensured by the fuzzy control solution.

Keywords

Fuzzy controller PI controller State-feedback gain matrix Tape transport Linearization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panda SP, Engelmann AP (2002) Modeling and control system design of reel-to-reel tape drives. In: Proceedings of the American Control Conference, Anchorage, pp 927–933Google Scholar
  2. 2.
    Lee WS and Rao MVC (2006). Modeling and design of tape transport mechanism. Math Comput Simulation 72: 26–37 CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Franklin GF, Powell JD and Emami-Naeini A (1994). Feedback control of dynamic systems. Addison-Wesley, Reading Google Scholar
  4. 4.
    Mathur PD and Messner WC (1998). Controller development for prototype high-speed low-tension tape transport. IEEE Trans Control Syst Technol 6: 534–542 CrossRefGoogle Scholar
  5. 5.
    Lu Y, Messner WC (2001) Disturbance observer design for tape transport control. In: Proceedings of American Control Conference, Arlington, pp 2567–2571Google Scholar
  6. 6.
    Panda SP, Lu Y (2003) Tutorial on industrial application of tape drive control techniques. In: Proceedings of American Control Conference, Denver, pp 1–17Google Scholar
  7. 7.
    Lee WS, Rao MVC (2004) Tape transport modelling and controller design. In: Proceedings of UKACC control 2004 conference, Bath, pp 57–62Google Scholar
  8. 8.
    Obinata G and Anderson BDO (2001). Model Reduction for Control System Design. Springer, London zbMATHGoogle Scholar
  9. 9.
    Dawson EJ (1966). A method for simplifying linear dynamic systems. IEEE Trans Automatic Control 11: 93–101 CrossRefGoogle Scholar
  10. 10.
    Litz L (1979). Ordnungsreduktion linearer Zustandsraummodelle durch Beibehaltung der dominanten Eigenbewegungen. Regelungstechnik 27: 80–86 zbMATHGoogle Scholar
  11. 11.
    Varga A (1994) On modal techniques for model reduction. In: Proceedings of First IMACS Conference on Mathematical Modelling, Vienna, pp 198–202Google Scholar
  12. 12.
    Moore BC (1981). Principal component analysis in linear systems: controllability, observability and model reduction. IEEE Trans Automatic Control 26: 17–32 CrossRefzbMATHGoogle Scholar
  13. 13.
    Glover K (1984). All optimal Hankel-norm approximations of linear multivariable systems and their L -error bounds. Int J Control 39: 1115–1193 CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Liu Y and Anderson BDO (1989). Singular perturbation approximation of balanced systems. Int J Control 50: 1379–1405 CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Peeters RLM, Hanzon B and Olivi M (2007). Canonical lossless state-space systems: staircase forms and the Schur algorithm. Linear Algebra Appl 425: 404–433 CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Liu Y and Anderson BDO (1986). Controller reduction via stable factorization and balancing. Int J Control 44: 507–531 CrossRefzbMATHGoogle Scholar
  17. 17.
    Varga A (1993) Explicit formulas for an efficient implementation of the frequency-weighted model reduction approach. In: Proceedings of European Control Conference, Groningen, The Netherlands,pp 693–696Google Scholar
  18. 18.
    Antoulas A (2005). Approximation of large-scale dynamical systems. SIAM Publications, Philadelphia zbMATHGoogle Scholar
  19. 19.
    Datta BN (2004). Numerical methods for linear control systems: design and analysis. Elsevier/Academic, Amsterdam/Boston zbMATHGoogle Scholar
  20. 20.
    Varga A (2004). Numerical awareness in control. IEEE Control Syst Magaz 24: 14–17 CrossRefGoogle Scholar
  21. 21.
    Ogata K (1990). Modern control engineering. Prentice-Hall, Upper Saddle River zbMATHGoogle Scholar
  22. 22.
    Mamdani EH (1974). Application of fuzzy algorithms for control of a simple dynamic plant. Proc IEEE 121: 1585–1588 Google Scholar
  23. 23.
    Takagi T and Sugeno M (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15: 116–132 zbMATHGoogle Scholar
  24. 24.
    Koczy LT (1996). Fuzzy if-then rule models and their transformation into one another. IEEE Trans Syst Man Cybern A 26: 621–637 CrossRefGoogle Scholar
  25. 25.
    Sugeno M (1999). On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. IEEE Trans Fuzzy Syst 7: 201–224 CrossRefGoogle Scholar
  26. 26.
    Park CW (2005). Output feedback control of disete-time nonlinear systems with unknown time-delay based on Takagi–Sugeno fuzzy models. Electrical Eng (Archiv für Elektrotechnik) 87: 41–45 CrossRefGoogle Scholar
  27. 27.
    Gümüş B and Özdemir M (2006). Sensorless vector control of a Permanent magnet synchronuous motor with fuzzy logic observer. Electrical Eng (Archiv für Elektrotechnik) 88: 395–402 CrossRefGoogle Scholar
  28. 28.
    Su TJ, Lin SY and Jong GJ (2006). FIR fuzzy equalizer design for nonlinear channels LMI-based fuzzy approach. Electrical Eng (Archiv für Elektrotechnik) 88: 527–534 Google Scholar
  29. 29.
    Li Z, Halang WA and Chen G (2006). Integration of fuzzy logic and Chaos Theory. Springer, Heidelberg Google Scholar
  30. 30.
    Sala A, Guerra TM and Babuška R (2005). Perspectives of fuzzy systems and control. Fuzzy Sets Syst 156: 432–444 CrossRefzbMATHGoogle Scholar
  31. 31.
    Galichet S and Foulloy L (1995). Fuzzy controllers: synthesis and equivalences. IEEE Trans Fuzzy Syst 3: 140–148 CrossRefGoogle Scholar
  32. 32.
    Aracil J and Gordillo F (2000). Stability Issues in Fuzzy Control. Springer, Heidelberg zbMATHGoogle Scholar
  33. 33.
    Michels K, Klawonn F, Kruse R and Nürnberger A (2006). Fuzzy control: fundamentals, stability and design of fuzzy controllers. Springer, Heidelberg zbMATHGoogle Scholar
  34. 34.
    Precup RE and Preitl S (2004). Optimisation iteria in development of fuzzy controllers with dynamics. Eng Appl Artif Intell 17: 661–674 CrossRefGoogle Scholar
  35. 35.
    Precup RE and Preitl S (2006). PI and PID controllers tuning for integral-type servo systems to ensure robust stability and controller robustness. Electrical Eng (Archiv für Elektrotechnik) 88: 149–156 Google Scholar
  36. 36.
    Baranyi P, Korondi P, Patton RJ and Hashimoto H (2004). Trade-off between approximation accuracy and complexity for TS fuzzy models. Asian J Control 6: 21–33 CrossRefGoogle Scholar
  37. 37.
    Seatzu C, Gromov D, Mayer E, Raisch J and Giua A (2006). Optimal control of disete-time hybrid automata under safety and liveness constraints. Nonlinear Anal 65: 1188–1210 CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Petres Z, Baranyi P, Hashimoto H (2006) Deease of the computational load of TP model transformation. In: Proceedings of IEEE 3rd international conference on mechatronics ICM 2006, Budapest, pp 655–659Google Scholar
  39. 39.
    Bede B, Rudas IJ and Bencsik AL (2007). First order linear fuzzy differential equations under generalized differentiability. Inf Sci 177: 1648–1662 CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Goodwin GC, Graebe SF and Salgado ME (2001). Control system design. Prentice-Hall, Englewood Cliffs Google Scholar
  41. 41.
    Preitl Z, Bars R (2003) Control system design aspects using the delta transformation. Preprints of 12th IFAC workshop on control applications of optimisation CAO 2003, Visegrad, pp 249–254Google Scholar
  42. 42.
    Lu Y, Messner WC (2001) Robust servo design for tape transport. In: Proceedings of 2001 IEEE international conference on control applications, Mexico City, pp 1014–1019Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Radu-Emil Precup
    • 1
    Email author
  • Wah Soon Lee
    • 2
  • Machavaram Venkata Calapathy Rao
    • 3
  • Zsuzsa Preitl
    • 1
    • 4
  1. 1.Faculty of Automation and Computers, Department of Automation and Applied Informatics“Politehnica” University of TimisoaraTimisoaraRomania
  2. 2.International College of Advanced Technology Sarawak (ICATS), Jalan Canna of Jalan Wan AlwiKuchingMalaysia
  3. 3.Multimedia University, Jalan Ayer Keroh LamaBukit BeruangMalaysia
  4. 4.Department of Control and Transport AutomationBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations