Advertisement

Electrical Engineering

, Volume 89, Issue 1, pp 71–77 | Cite as

Improved transmission for photonic crystal Y-junctions

  • L. Dekkiche
  • R. Naoum
Article

Abstract

A highly efficient Y-junction based on a planar photonic crystal (PhC) platform is presented. The PhC consists of a triangular array of holes etched into GaAs/AlGaAs heterostructure. The Y-junction has smaller holes positioned at the center of the junction, giving rise to very uniform splitting and high transmission. The performance is very encouraging, with simulation transmission of approximately 50% for each arm of the Y-splitter relative to a comparable single-defect PhC waveguide.

Keywords

Photonic crystals Finite difference time domain (FDTD) methods Integrated optics Optical waveguide components Waveguide bends 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boscolo S, Midrio M, Krauss TF (2002) Y-junctions in photonic crystal channel waveguides: high transmission and impedance matching. Opt Lett 27(12):1001–1003Google Scholar
  2. 2.
    Smith CJM, Benisty H, Olivier S, Rattier M, Weisbuch C, Krauss TF, De La Rue RM, Houdré R, Oesterle U (2000) Low-loss channel waveguides with two-dimensional photonic crystal boundaries. Appl Phys Lett 77:2813–2815CrossRefGoogle Scholar
  3. 3.
    Arentof J, Kristensen M, Sondergaard T, Boltasseva A (2002) Quantitative analysis of bending efficiency in photonic-crystal wave guide bends at λ=1.55μ m wavelengths. Electron Lett 38:274CrossRefGoogle Scholar
  4. 4.
    Chow E, Lin SY, Wendt JR, Johnson SG, Joanopoulos JD (2001) Opt Lett 26:286Google Scholar
  5. 5.
    Smith CJM, Benisty H, Olivier S, Rattier M, Weisbuch C, Krauss TF, De La Rue RM, Houdré R, Oesterle U (2001) Coupled guide and cavity in a two-dimensional photonic crystal. Appl Phys Lett 78:1487–1489CrossRefGoogle Scholar
  6. 6.
    Joannopoulos JD, Villeneuve PR, Fan S (1997) Photonic crystals: putting a new twist on light. Nature 387:143CrossRefGoogle Scholar
  7. 7.
    Fan SH, Johnson SG, Joannopoulos JD, Manolatou C, Haus HA (2001) Waveguide branches in photonic crystals. J Opt Soc Am B 18:162–165Google Scholar
  8. 8.
    Wilson R, Karle TJ, Moerman I, Krauss TF (2003) Efficient photonic crystal Y-junctions. J Opt A:Pure Appl Opt 5:S76–S80Google Scholar
  9. 9.
    Moosburger J, Kamp M, Sorchel A, Olivier S, Benisty H, Weisbuch C, Oesterlee U (2001) Enhanced transmission through photonic crystal-based bent waveguide by bend engineering. Appl Phys Lett 79(22):3579–3581CrossRefGoogle Scholar
  10. 10.
    Yee KS (1996) Numerical solutions of initial boundary value problems involving maxwell's equation in isotropic media. IEEE Trans Antennas Propag 14:302Google Scholar
  11. 11.
    Qiu M, He S (2000) Numerical method for computing defect modes in two dimensional photonic crystals with dielectric or metallic inclusions. Phys Rev B 61(19)Google Scholar
  12. 12.
    Tsuji Y, Koshiba U (2002) Finite element method using porte truncation by perfectly matched layer boundary condition for optical waveguide discontinuity problems. J Lightwave Technol 20(3):463–468CrossRefGoogle Scholar
  13. 13.
    Manolatou C, Johnson SG, Fan S, Villeneuve PR, Haus HA, Joannopoulos JD (1999) High-density integrated optics. J Lightwave Technol 17(9):1–11CrossRefGoogle Scholar
  14. 14.
    Koshiba M, Tsuji Y, Hikari M (2000) Time-domain beam propagation method and its application to photonic crystal circuits. J Lightwave Technol 18(1):102CrossRefGoogle Scholar
  15. 15.
    Mekis A, Chen JC, Kurland I, Fan S, Villeneuve PR, Joannopoulos JD (1996) High transmission through sharp bends in photonic crystal waveguides. Phys Rev Lett 77:3787–3790CrossRefGoogle Scholar
  16. 16.
    Palamaru M, Lalanne L (2001) Photonic crystal waveguide: out-of-plane losses and adiabatic modal conversion. Appl Phys Lett 78:1466–1468CrossRefGoogle Scholar
  17. 17.
    Rauscher K, Erni D, Smajic J, Hafner Ch (2004) Improved transmission for 60° photonic crystal waveguide bends. Progress in electromagnetic research symposium, Pisa, ItalyGoogle Scholar
  18. 18.
    Borel PI, Harpoth A, Frandsen LH, Kristensen M (2004) Topology optimization and fabrication of photonic crystal structures. Opt Express 12:1996–2001CrossRefGoogle Scholar
  19. 19.
    Jensen J, Sigmund O Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends. Appl Phys Lett 84(12):2022–2024CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Telecommunications and Digital Signal Processing Laboratory, Institute of ElectronicUniversity Djillali Liabes of Sidi-Bel-AbbesSidi-Bel-AbbesAlgeria

Personalised recommendations