Advertisement

Iterated local transitivity model for signed social networks

  • Deepa Sinha
  • Deepakshi Sharma
Original Paper
  • 111 Downloads

Abstract

In this paper, we generalize the iterated local transitivity (ILT) model for online social networks for signed networks. Signed networks focus on the type of relations (friendship or enmity) between the vertices (members of online social networks). The ILT model for signed networks provide an insight into how networks react to the addition of clone vertex. In this model, at each time step t and for already existing vertex x, a new vertex (clone) \(x'\) is added which joins to x and neighbors of x. The sign of new edge \(yx', \ y \in N[x]\) neighborhood of x is defined by calculating the number of positive and negative neighbors of x. We also discuss properties such as balance and clusterability, sign-compatibility and C-sign-compatibility.

Keywords

Social network Signed social network Local transitivity model Marked signed graph Neighborhood Balance Sign-compatibility Clusterability Algorithm 

Mathematics Subject Classification

05C22 05C76 05C85 

References

  1. 1.
    Acharya, B.D.: Minus domination in a signed graph. J. Comb. Inf. Syst. Sci. 37(2–4), 333 (2012)MATHGoogle Scholar
  2. 2.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bakker, L., Hare, W., Khosravi, H., Ramadanovic, B.: A social network model of investment behaviour in the stock market. Phys. A Stat. Mech. Appl. 389(6), 1223–1229 (2010)CrossRefGoogle Scholar
  4. 4.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Barnes, J.A.: Class and Committees in a Norwegian Island Parish. Plenum, New York (1954)Google Scholar
  6. 6.
    Bonato, A., Hadi, N., Horn, P., Pralat, P., Wang, C.: Models of online social networks. Internet Math. 6(3), 285–313 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)CrossRefGoogle Scholar
  8. 8.
    Curran, S.R., Saguy, A.C.: Migration and cultural change: a role for gender and social networks? J. Int. Women’s Stud. 2(3), 54–77 (2013)Google Scholar
  9. 9.
    Davis, J.A.: Clustering and structural balance in graphs. Soc. Netw. Dev. Parad. 4, 27–34 (1977)Google Scholar
  10. 10.
    Dholakia, U.M., Bagozzi, R.P., Pearo, L.K.: A social influence model of consumer participation in network-and small-group-based virtual communities. Int. J. Res. Mark. 21(3), 241–263 (2004)CrossRefGoogle Scholar
  11. 11.
    Doreian, P., Stokman, F.: Evolution of Social Networks. Routledge, Abingdon (2013)MATHGoogle Scholar
  12. 12.
    Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)CrossRefGoogle Scholar
  13. 13.
    Ellison, N.B., Boyd, D.M.: Social network sites: definition, history, and scholarship. J. Comput. Mediat. Commun. 13(1), 210–230 (2007)CrossRefGoogle Scholar
  14. 14.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)CrossRefGoogle Scholar
  15. 15.
    Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proceedings of the 13th International Conference on World Wide Web, pp. 403–412. ACM (2004)Google Scholar
  16. 16.
    Handcock, M.S.: Statistical models for social networks: inference and degeneracy. In: Breiger, R.L., Carley, K.M., Pattison, P. (eds.) Dynamic social network modelling and analysis. Workshop summary and papers. National research council, pp. 229–240. The National Academic Press, Washington (2002)Google Scholar
  17. 17.
    Harary, F., et al.: On the notion of balance of a signed graph. Mich. Math. J. 2(2), 143–146 (1953)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Henning, M.A.: Signed total domination in graphs. Discrete Math. 278(1), 109–125 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hu, B., Jiang, X.-Y., Ding, J.-F., Xie, Y.-B., Wang, B.-H.: A weighted network model for interpersonal relationship evolution. Phys. A Stat. Mech. Appl. 353, 576–594 (2005)CrossRefGoogle Scholar
  20. 20.
    Jackson, M.O., et al.: Social and Economic Networks, vol. 3. Princeton university press, Princeton (2008)MATHGoogle Scholar
  21. 21.
    Knoke, D., Yang, S.: Social Network Analysis, vol. 154. Sage, Thousand Oaks (2008)CrossRefGoogle Scholar
  22. 22.
    Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Phillips, S.Y., Han, J., Faloutsos, C. (eds.) Link Mining: Models, Algorithms, and Applications, vol. 1, pp. 337–357. Springer, New York (2010)Google Scholar
  24. 24.
    Kunegis, J., Lommatzsch, A., Bauckhage, C.: The slashdot zoo: mining a social network with negative edges. In: Proceedings of the 18th International Conference on World Wide Web, pp. 741–750. ACM (2009)Google Scholar
  25. 25.
    Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J., De Luca, E.W., Albayrak, S.: Spectral analysis of signed graphs for clustering, prediction and visualization. SDM 10 (2010)Google Scholar
  26. 26.
    Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 462–470. ACM (2008)Google Scholar
  27. 27.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 641–650. ACM (2010)Google Scholar
  28. 28.
    Leskovec, J., Huttenlocher, D., Jon Kleinberg. Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM (2010)Google Scholar
  29. 29.
    Mendonça, I., Figueiredo, R., Labatut, V., Michelon, P.: Relevance of negative links in graph partitioning: a case study using votes from the European parliament. arXiv preprint arXiv:1507.04215 (2015)
  30. 30.
    Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Growth of the flickr social network. In: Proceedings of the First Workshop on Online Social Networks, pp. 25–30. ACM (2008)Google Scholar
  31. 31.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM (2007)Google Scholar
  32. 32.
    Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007)CrossRefGoogle Scholar
  33. 33.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)CrossRefGoogle Scholar
  34. 34.
    Saramäki, J., Kivelä, M., Onnela, J.-P., Kaski, K., Kertesz, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75(2), 027105 (2007)CrossRefGoogle Scholar
  35. 35.
    Sinha, D., Dhama, A.: Canonical-sign-compatibility of some signed graphs. J. Comb. Inf. Syst. Sci. 38(1–4), 129 (2013)MATHGoogle Scholar
  36. 36.
    Sinha, D., Dhama, A.: Sign-compatibility of some derived signed graphs. Indian J. Math. 55(1), 23–40 (2013)MathSciNetMATHGoogle Scholar
  37. 37.
    Sinha, D., Garg, P.: Canonical consistency of semi-total point signed graphs. Nat. Acad. Sci. Lett. 38(6), 497–500 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sinha, D., Sethi, A.: An optimal algorithm to detect sign compatibility of a given sigraph. Nat. Acad. Sci. Lett. 38(3), 235–238 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Skyrms, B., Pemantle, R.: A dynamic model of social network formation. In: Gross, T., Sayama, H. (eds.) Adaptive networks, pp. 231–251. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  40. 40.
    Szell, M., Lambiotte, R., Thurner, S.: Multirelational organization of large-scale social networks in an online world. Proc. Nat. Acad. Sci. 107(31), 13636–13641 (2010)CrossRefGoogle Scholar
  41. 41.
    Victor, P., Cornelis, C., Cock, M.D., Teredesai, A.M.: Trust-and distrust-based recommendations for controversial reviews. IEEE. Intell. Syst. 26(1), 48–55 (2011). doi: 10.1109/MIS.2011.22 CrossRefGoogle Scholar
  42. 42.
    Walikar, H.B., Motammanavar, S.V., Acharya, B.D.: Signed domination in signed graphs. J. Comb. Inf. Syst. Sci. 40(1–4), 107 (2015)MathSciNetMATHGoogle Scholar
  43. 43.
    West, D.B.: Introduction to Graph Theory, vol. 2. Prentice hall, Upper Saddle River (2001)Google Scholar
  44. 44.
    Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. (csur) 45(4), 43 (2013)CrossRefMATHGoogle Scholar
  45. 45.
    Yang, B., Cheung, W.K., Liu, J.: Community mining from signed social networks. Knowl. Data Eng. IEEE Trans. 19(10), 1333–1348 (2007)CrossRefGoogle Scholar
  46. 46.
    Yang, S.-H., Smola, A.J., Long, B., Zha, H., Chang, Y.: Friend or frenemy? predicting signed ties in social networks. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 555–564. ACM (2012)Google Scholar
  47. 47.
    Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4(1), 47–74 (1982)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Zaslavsky, T.: Orientation of signed graphs. Eur. J. Comb. 12(4), 361–375 (1991)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Zaslavsky, T.: Signed analogs of bipartite graphs. Discrete Math. 179(1), 205–216 (1998)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Ziegler, C.-N., Lausen, G.: Propagation models for trust and distrust in social networks. Inf. Syst. Front. 7(4–5), 337–358 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsSouth Asian UniversityChanakyapuriIndia

Personalised recommendations