Minimal logarithmic signatures for one type of classical groups

  • Haibo Hong
  • Licheng Wang
  • Haseeb Ahmad
  • Jun Shao
  • Yixian Yang
Original Paper
  • 183 Downloads

Abstract

As a special type of factorization of finite groups, logarithmic signature (LS) is used as the main component of cryptographic keys for secret key cryptosystems such as PGM and public key cryptosystems like \(MST_1\), \(MST_2\) and \(MST_3\). An LS with the shortest length, called a minimal logarithmic signature (MLS), is even desirable for cryptographic applications. The MLS conjecture states that every finite simple group has an MLS. Recently, the conjecture has been shown to be true for general linear groups \(GL_n(q)\), special linear groups \(SL_n(q)\), and symplectic groups \(Sp_n(q)\) with q a power of primes and for orthogonal groups \(O_n(q)\) with q a power of 2. In this paper, we present new constructions of minimal logarithmic signatures for the orthogonal group \(O_n(q)\) and \(SO_n(q)\) with q a power of an odd prime. Furthermore, we give constructions of MLSs for a type of classical groups—the projective commutator subgroup \(P{\varOmega }_n(q)\).

Keywords

(Minimal) logarithmic signature Orthogonal group Projective commutator subgroup Stabilizer Spreads 

Mathematics Subject Classification

94A60 11T71 14G50 20G40 20E28 20E32 20D06 05E15 51A40 

Notes

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (NSFC) (Nos. 61602408,61502048,61370194), Open Foundation of State key Laboratory of Networking and Switching Technology (Beijing University of Posts and Telecommunications) (SKLNST-2016-1-05) and the NSFC A3 Foresight Program (No. 61411146001)

References

  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bohli, J.M., Steinwandt, R., Vasco, M.I.G., Martínez, C.: Weak keys in \(MST_1\). Des. Codes Cryptogr. 37, 509–524 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Lempken, W., Magliveras, S.S., van Trung, T., Wei, W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Magliveras, S.S.: Secret and public-key cryptosystems from group factorizations. Tatra Mt. Math. Publ. 25, 11–22 (2002)MathSciNetMATHGoogle Scholar
  5. 5.
    Magliveras, S.S., Memon, M.D.: Algebraic properties of cryptosystem PGM. J. Cryptol. 5, 167–183 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Magliveras, S.S., Stinson, D.R., van Trung, T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15, 285–297 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Marquardt, T., Svaba, P., Trung, Tran Van: Pseudorandom number generators based on random covers for finite groups. Des. Codes Cryptogr. 64, 209–220 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Magliveras S.S.: A cryptosystem from logarithmic signatures of finite groups. In: Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp. 972–975. Elsevier Publishing Company, Amsterdam (1986)Google Scholar
  9. 9.
    Qu, M., Vanstone, S.A.: Factorizations of elementary abelian p-groups and their cryptographic significance. J. Cryptol. 7, 201–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hong, H., Wang, L., Yang, Y., Ahmad, H.: All exceptional groups of lie type have minimal logarithmic signatures. Appl. Algebra Eng. Commun. Comput. 25(4), 287–296 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hong, H., Wang, L., Yang, Y.: Minimal logarithmic signatures for the unitary group Un(q). Des. Codes Cryptogr 77(1), 179–191 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lempken, W., van Trung, T.: On minimal logarithmic signatures of finite groups. Exp. Math. 14, 257–269 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Rahimipour, A.R., Ashrafi, A.R., Gholami, A.: The existence of minimal logarithmic signatures for the sporadic Suzuki and simple Suzuki groups. Cryptogr. Commun. 7(4), 535–542 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Vasco, M.I.G., Rötteler, M., Steinwandt, R.: On minimal length factorizations of finite groups. Exp. Math. 12, 10–12 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Holmes, P.E.: On minimal factorisations of sporadic groups. Exp. Math. 13, 435–440 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Singhi, N., Singhi, N., Magliveras, S.S.: Minimal logarithmic signatures for finite groups of lie type. Des. Codes Cryptogr. 55, 243–260 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Singhi, N., Singhi, N.: Minimal logarithmic signatures for classical groups. Dec. Codes Cryptogr. 60, 183–195 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Garrett, P.: Buildings and Classical Groups. Chapman and Hall, London (1997)CrossRefMATHGoogle Scholar
  19. 19.
    Wilson, R.A.: The Finite Simple Groups. Graduate Texts in Mathematics, vol. 251. Springer, London (2009)CrossRefGoogle Scholar
  20. 20.
    De Beule, J., Klein, A., Metsch, K., Storme, L.: Partial ovoids and partial spreads of classical finite polar spaces. Serdica Math. J. 34, 689–714 (2008)MathSciNetMATHGoogle Scholar
  21. 21.
    Kantor, W.M.: Spreads, translation planes and Kerdock sets I. SIAM J Algebr. Discret. Methods 3, 151–165 (1982)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Thas, J.A.: Ovoids and spreads of finite classical polar spaces. Geom. Dedicata 10, 135–143 (1981)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dye, R.H.: Maximal subgroups of finite orthogonal groups stabilizing spreads of lines. J. Lond. Math. Soc. 33(2), 279–293 (1986)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    González Vasco, M.I., Steinwandt, R.: Obstacles in two public key cryptosystems based on group factorizations. Tatra Mt. Math. Publ. 25, 23–37 (2002)MathSciNetMATHGoogle Scholar
  25. 25.
    Cossidente, A., De Resmini, M.J.: Remarks on singer cyclic groups and their normalizers. Des. Codes Cryptogr. 32, 97–102 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Babai, L., Pálfy, P.P., Saxl, J.: On the number of \(p\) regular elements in finite simple groups. LMS J. Comput. Math. 12, 82–119 (2009)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Svaba, P., Trung, Tran van: Public key cryptosystem \(MST_3\): cryptanalysis and realization. J. Math. Cryptol. 3, 271–315 (2010)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Haibo Hong
    • 1
    • 2
  • Licheng Wang
    • 2
  • Haseeb Ahmad
    • 2
  • Jun Shao
    • 1
  • Yixian Yang
    • 2
  1. 1.School of Computer Science and Information EngineeringZhejiang Gongshang UniversityHangzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China

Personalised recommendations