New secondary constructions of Bent functions

  • Fengrong Zhang
  • Claude Carlet
  • Yupu Hu
  • Wenzheng Zhang
Original Paper

Abstract

In this paper, we first present a novel secondary construction of bent functions (building new bent functions from two already defined ones). Furthermore, the algebraic degree and algebraic immunity of the constructed functions are analysed. Finally, we apply the construction using as initial functions some specific bent functions and then specify sufficient conditions for the resulting bent functions not to be contained in the completed Maiorana–McFarland class. In the second part of the paper, we present a corrigendum of “Constructions of bent–negabent functions and their relation to the completed Maiorana–McFarland Class” (IEEE Trans Inf Theory 61(3):1496–1506, 2015).

Keywords

Boolean function Bent function High nonlinearity  Algebraic degree 

Mathematics Subject Classification

06E30 94A60 

References

  1. 1.
    Canteaut, A., Charpin, P.: Decomposing bent functions. IEEE Trans. Inf. Theory 49(8), 2004-2019 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Carlet, C.: Two new classes of bent functions. In: Helleseth, T. (ed.) Advances in EUROCRYPT’93, LNCS 765, 77-101 (1994)Google Scholar
  3. 3.
    Carlet, C.: Generalized partial spreads. IEEE Trans. Inf. Theory 41(5), 1482-1487 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Carlet, C.: A construction of bent functions. In: Cohen, S., Niederreiter, H. (eds) Proceedings of Third International Conference on Finite Fields and Applications, pp 47-58. Cambridge University Press, Cambridge (1996)Google Scholar
  5. 5.
    Carlet, C.: On the confusion and diffusion properties of Maiorana-McFarland’s and extended Maiorana-McFarland’s functions. J. Complex. 20(2-3), 182-204 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Carlet, C.: On the secondary constructions of resilient and bent functions. In: Feng, K., Niederreiter, H., Xing, C. (eds.) Proceedings of the Workshop on Coding, Cryptography and Combinatorics 2003, pp. 3-28. Birkhäuser Verlag (2004)Google Scholar
  7. 7.
    Carlet, C.: On bent and highly nonlinear balanced/resilient functions and their algebraic immunities. In: Fossorier, M. et al. (eds.) Proceedings of AAECC 2006, LNCS 3857, 1-28 (2006)Google Scholar
  8. 8.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) The Monography Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257-397. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  9. 9.
    Carlet, C., Dobbertin, H., Leander, G.: Normal extensions of bent functions. IEEE Trans. Inf. Theory 50(11), 2880-2885 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Carlet, C., Yucas, J.L.: Piecewise constructions of bent and almost optimal Boolean functions. Des. Codes Cryptogr. 37(3), 449-464 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Carlet, C., Zhang, F., Hu, Y.: Secondary constructions of bent functions and their enforcement. Adv. Math. Commun. 6(3), 305-314 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chepyzhov, V., Smeets, B.: On a fast correlation attack on certain stream ciphers. Proceedings of EUROCRYPT’91, Lecture Notes in Computer Science 547, pp. 176-185 (1992)Google Scholar
  13. 13.
    Dillon, J.: Elementary Hadamard difference sets. Ph.D. Dissertation, University of Maryland, College Park (1974)Google Scholar
  14. 14.
    Dobbertin, H.: Construction of bent functions and balanced Boolean functions with high nonlinearity. In: Gilbert, H., Handschuh, H. (eds.) Proceedings of FSE 1995, LNCS 1008, 61-74 (1995)Google Scholar
  15. 15.
    Dobbertin, H., Leander, G.: Bent functions embedded into the recursive framework of ${\bb Z\it }$-bent functions. Des. Codes Cryptogr. 49(1-3), 3-22 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fu, S., Li, C., Matsuura, k, Qu, L.: Construction of odd-variable resilient Boolean functions with optimal degree. IEICE Trans. Fundam. E94-A, 265-267 (2011)CrossRefGoogle Scholar
  17. 17.
    Guillot, P.: Completed GPS covers all bent functions. J. Comb. Theory Ser. A 93, 242-260 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Leander, G., McGuire, G.: Construction of bent functions from near-bent functions. J. Comb. Theory Ser. A 116, 960-970 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lempel, A., Cohn, M.: Maximal families of bent sequences. IEEE Trans. Inf. Theory 28(6), 865-868 (1982)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam (1977)MATHGoogle Scholar
  21. 21.
    McFarland, R.I.: A family of difference sets in non-cyclic groups. J. Comb. Theory Ser. A. 15, 1-10 (1973)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    No, J.S., Gil, G.M., Shin, D.J.: Generalized construction of binary bent sequences with optimal correlation property. IEEE Trans. Inf. Theory 49(7), 858-864 (1982)MathSciNetMATHGoogle Scholar
  23. 23.
    Olsen, J.D., Scholtz, R.A., Welch, L.R.: Bent-function sequence. IEEE Trans. Inf. Theory 28(6), 1769-1780 (2003)MathSciNetGoogle Scholar
  24. 24.
    Rothaus, O.S.: On “bent” functions. J. Comb. Theory Ser. A 20, 300-305 (1976)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wolfmann, J.: Bent functions and coding theory. In: Pott, A.P., Kumar, V., Helleseth, T., Jungnickel, D. (eds.) Difference Sets, Sequences and their Correlation Properties, pp. 395-417. Kluwer, Amsterdam (1999)Google Scholar
  26. 26.
    Zhang, F., Wei, Y., Pasalic, E.: Constructions of bent-negabent functions and their relation to the completed Maiorana-McFarland class. IEEE Trans. Inf. Theory 61(3), 1496-1506 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zheng, D., Yu, L., Hu, L.: On a class of binomial bent functions over the finite fields of odd characteristic. Appl. Algebra Eng. Commun. Comput. 24(6), 461-475 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zheng, Y., Zhang, X.-M.: Relationships between bent functions and complementary plateaued functions. In: Song, J. (ed.) Proceedings 2nd International Conference on Information Security and Cryptology (ICISC’99), LNCS 1787, 60-75 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fengrong Zhang
    • 1
    • 2
  • Claude Carlet
    • 3
  • Yupu Hu
    • 2
  • Wenzheng Zhang
    • 4
  1. 1.School of Computer Science and TechnologyChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.Xidian UniversityState Key Laboratory of Integrated Services NetworksXi’anPeople’s Republic of China
  3. 3.Department of Mathematics, LAGA, CNRS, (UMR 7539), Universities of Paris 8 and Paris 13Sorbonne Paris CitéSaint-Denis CedexFrance
  4. 4.Science and Technology on Communication Security Laboratory, The 30th Research Institute of China Electronics Technology Group CorporationChengduPeople’s Republic of China

Personalised recommendations