Deterministic root finding over finite fields using Graeffe transforms

  • Bruno Grenet
  • Joris van der Hoeven
  • Grégoire Lecerf
Original Paper


We design new deterministic algorithms, based on Graeffe transforms, to compute all the roots of a polynomial which splits over a finite field \(\mathbb {F}_q\). Our algorithms were designed to be particularly efficient in the case when the cardinality \(q - 1\) of the multiplicative group of \(\mathbb {F}_q\) is smooth. Such fields are often used in practice because they support fast discrete Fourier transforms. We also present a new nearly optimal algorithm for computing characteristic polynomials of multiplication endomorphisms in finite field extensions. This algorithm allows for the efficient computation of Graeffe transforms of arbitrary orders.


Polynomial root finding Finite field Graeffe transform Deterministic algorithm 

Mathematics Subject Classification

13P05 12Y05 68W30 


  1. 1.
    Allem, L.E., Gao, S., Trevisan, V.: Extracting sparse factors from multivariate integral polynomials. J. Symb. Comput. 52, 3–16 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arora, M., Ivanyos, G., Karpinski, M., Saxena, N.: Deterministic polynomial factoring and association schemes. LMS J. Comput. Math. 17(1), 123–140 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bach, E.: Comments on search procedures for primitive roots. Math. Comput. 66, 1719–1727 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Berlekamp, E.R.: Factoring polynomials over finite fields. Bell Syst. Tech. J. 46, 1853–1859 (1967)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comput. 24, 713–735 (1970)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bostan, A., Gonzales-Vega, L., Perdry, H., Schost, É.: Complexity issues on Newton sums of polynomials (2005). Distributed in the digital proceedings of MEGA’05Google Scholar
  7. 7.
    Bostan, A., Flajolet, P., Salvy, B., Schost, É.: Fast computation of special resultants. J. Symb. Comput. 41(1), 1–29 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bostan, A., Gaudry, P., Schost, É.: Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM J. Comput. 36(6), 1777–1806 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complex. 21(4), 420–446 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Camion, P.: A deterministic algorithm for factorizing polynomials of \({ F}_q[X]\). In: Combinatorial mathematics (Marseille-Luminy, 1981), North-Holland Math. Stud., vol. 75, pp. 149–157. North-Holland, Amsterdam (1983)Google Scholar
  11. 11.
    Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28(7), 693–701 (1991)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36(154), 587–592 (1981)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Caruso, X., Roe, D., Vaccon, T.: Tracking \(p\)-adic precision. LMS J. Comput. Math. 17, 274–294 (2014). Special Issue A, Algorithmic Number Theory Symposium XIGoogle Scholar
  14. 14.
    Costa, E., Harvey, D.: Faster deterministic integer factorization. Math. Comput. 83(285), 339–345 (2014)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Evdokimov, S.: Factorization of polynomials over finite fields in subexponential time under GRH. In: Algorithmic Number Theory (Ithaca, NY, 1994), Lecture Notes in Comput. Sci., vol. 877, pp. 209–219. Springer, Berlin (1994)Google Scholar
  16. 16.
    Gao, S.: On the deterministic complexity of factoring polynomials. J. Symb. Comput. 31(1–2), 19–36 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. J. Complex. 17(1), 154–211 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Grenet, B., van der Hoeven, J., Lecerf, G.: Randomized root finding over finite FFT-fields using tangent Graeffe transforms. In: Robertz, D. (ed.) ISSAC ’15: Proceedings of the 2015 International Symposium on Symbolic and Algebraic Computation, pp. 197–204. ACM Press (2015)Google Scholar
  19. 19.
    Harvey, D., van der Hoeven, J., Lecerf, G.: Even faster integer multiplication (2014). arXiv:1407.3360
  20. 20.
    Harvey, D., van der Hoeven, J., Lecerf, G.: Faster polynomial multiplication over finite fields (2014). arXiv:1407.3361
  21. 21.
    Huang, M.D.A.: Generalized Riemann hypothesis and factoring polynomials over finite fields. J. Algorithms 12(3), 464–481 (1991)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kaltofen, E.: Polynomial factorization: a success story. In: Hong, H. (ed.) ISSAC ’03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 3–4. ACM Press (2003)Google Scholar
  23. 23.
    Kedlaya, K.S., Umans, C.: Fast modular composition in any characteristic. In: Broder, A.Z., et al. (eds.) 49th Annual IEEE Symposium on Foundations of Computer Science 2008 (FOCS ’08), pp. 146–155. IEEE (2008)Google Scholar
  24. 24.
    Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. SIAM J. Comput. 40(6), 1767–1802 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kronecker, L.: Grundzüge einer arithmetischen theorie der algebraischen Grössen. J. Reine Angew. Math. 92, 1–122 (1882)MathSciNetMATHGoogle Scholar
  26. 26.
    Lecerf, G.: Fast separable factorization and applications. Appl. Algebra Eng. Commun. Comput. 19(2), 135–160 (2008)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Malajovich, G., Zubelli, J.P.: Tangent graeffe iteration. Numer. Math. 89(4), 749–782 (2001)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Subgroup refinement algorithms for root finding in \(\text{ GF }(q)\). SIAM J. Comput. 21(2), 228–239 (1992)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Mignotte, M., Schnorr, C.: Calcul déterministe des racines d’un polynôme dans un corps fini. C. R. Acad. Sci. Paris Sér. I Math 306(12), 467–472 (1988)MathSciNetMATHGoogle Scholar
  30. 30.
    Moenck, R.T.: On the efficiency of algorithms for polynomial factoring. Math. Comput. 31, 235–250 (1977)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Mullen, G.L., Panario, D.: Handbook of Finite Fields. Discrete Mathematics and Its Applications. Chapman and Hall/CRC (2013)Google Scholar
  32. 32.
    Pan, V.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39(2), 187–220 (1997)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Pan, V.: New techniques for the computation of linear recurrence coefficients. Finite Fields Appl. 6, 93–118 (2000)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF\((p)\) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory 24(1), 106–110 (1978)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Rabin, M.O.: Probabilistic algorithms in finite fields. SIAM J. Comput. 9(2), 273–280 (1980)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Rónyai, L.: Factoring polynomials modulo special primes. Combinatorica 9(2), 199–206 (1989)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Rónyai, L.: Galois groups and factoring polynomials over finite fields. SIAM J. Discrete Math. 5(3), 345–365 (1992)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Saha, C.: Factoring polynomials over finite fields using balance test. In: Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science, Leibniz International Proceedings in Informatics (LIPIcs), vol. 1, pp. 609–620. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008).
  39. 39.
    Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod \(p\). Math. Comput. 44(170), 483–494 (1985)MathSciNetMATHGoogle Scholar
  40. 40.
    Shoup, V.: A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic. In: Watt, S.M. (ed.) ISSAC ’91: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, pp. 14–21. ACM Press (1991)Google Scholar
  41. 41.
    Shoup, V.: NTL: A Library for doing Number Theory (2014) Software, version 8.0.0.
  42. 42.
    Shoup, V.: On the deterministic complexity of factoring polynomials over finite fields. Inf. Process. Lett. 33(5), 261–267 (1990)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Shoup, V.: Smoothness and factoring polynomials over finite fields. Inf. Process. Lett. 38(1), 39–42 (1991)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Shoup, V.: Searching for primitive roots in finite fields. Math. Comput. 58, 369–380 (1992)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Vaccon, T.: \(p\)-adic precision. Ph.D. thesis, Université Rennes 1 (2015)
  46. 46.
    van der Hoeven, J., Lecerf, G.: Sparse polynomial interpolation in practice. ACM Commun. Comput. Algebra 48(4) (2014). In section “ISSAC 2014 Software Presentations”Google Scholar
  47. 47.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  48. 48.
    von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey. J. Symb. Comput. 31(1–2), 3–17 (2001)Google Scholar
  49. 49.
    von zur Gathen, J.: Factoring polynomials and primitive elements for special primes. Theor. Comput. Sci. 52(1–2), 77–89 (1987)Google Scholar
  50. 50.
    Źrałek, B.: Using partial smoothness of \(p-1\) for factoring polynomials modulo \(p\). Math. Comput. 79, 2353–2359 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bruno Grenet
    • 1
  • Joris van der Hoeven
    • 2
  • Grégoire Lecerf
    • 2
  1. 1.Laboratoire d’informatique, de robotique et de microélectronique de Montpellier LIRMM, UMR 5506 CNRS, CC477Université MontpellierMontpellier Cedex 5France
  2. 2.Laboratoire d’informatique de l’École polytechnique, LIX, UMR 7161 CNRSCampus de l’École polytechniquePalaiseauFrance

Personalised recommendations