Advertisement

The weight enumerator of the duals of a class of cyclic codes with three zeros

  • Shudi YangEmail author
  • Zheng-An Yao
  • Chang-An Zhao
Original Paper

Abstract

Cyclic codes and their dual codes have been an interesting subject studied for many years. However, their weight distributions are known for a few special cases only. In this paper, we determine the weight distributions for the duals of a class of reducible cyclic codes with three zeros.

Keywords

Cyclic codes Gaussian periods Gauss sums Cyclotomic numbers Weight distribution 

Notes

Acknowledgments

The work of Zheng-An Yao is partially supported by the NNSFC (Grant No. 11271381), the NNSFC (Grant No. 11431015) and China 973 Program (Grant No. 2011CB808000). The work of Chang-An Zhao is partially supported by the NNSFC (Grant No. 61472457).

References

  1. 1.
    Baumert, L., McEliece, R.J.: Weights of irreducible cyclic codes. Inf. Control 20(2), 158–175 (1972)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baumert, L., Mills, W., Ward, R.L.: Uniform cyclotomy. J. Number Theory 14(1), 67–82 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baumert, L., Mykkeltveit, J.: Weight distributions of some irreducible cyclic codes. DSN Prog. Rep. 16, 128–131 (1973)Google Scholar
  4. 4.
    Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boston, N., McGuire, G.: The weight distributions of cyclic codes with two zeros and zeta functions. J. Symb. Comput. 45(7), 723–733 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Charpin, P.: Cyclic codes with few weights and Niho exponents. J. Comb. Theory Ser. A 108(2), 247–259 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ding, C.: The weight distribution of some irreducible cyclic codes. IEEE Trans. Inf. Theory 55(3), 955–960 (2009)CrossRefGoogle Scholar
  9. 9.
    Ding, C., Liu, Y., Ma, C., Zeng, L.: The weight distributions of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 57(12), 8000–8006 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ding, C., Yang, J.: Hamming weights in irreducible cyclic codes. Discrete Math. 313(4), 434–446 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Feng, K., Luo, J.: Weight distribution of some reducible cyclic codes. Finite Fields Appl. 14(2), 390–409 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Feng, T.: On cyclic codes of length \(2^{2^r}-1\) with two zeros whose dual codes have three weights. Des. Codes Cryptogr. 62(3), 253–258 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Feng, T., Momihara, K.: Evaluation of the weight distribution of a class of cyclic codes based on index 2 Gauss sums. IEEE Trans. Inf. Theory 59(9), 5980–5984 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jacobson, N.: Basic Algebra I. WF Freeman, San Francisco (1974)Google Scholar
  15. 15.
    Li, C., Yue, Q.: Weight distributions of two classes of cyclic codes with respect to two distinct order elements. IEEE Trans. Inf. Theory 60(1), 296–303 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, C., Yue, Q., Li, F.: Hamming weights of the duals of cyclic codes with two zeros. IEEE Trans. Inf. Theory 60(7), 3895–3902 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, C., Yue, Q., Li, F.: Weight distributions of cyclic codes with respect to pairwise coprime order elements. Finite Fields Appl. 28, 94–114 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, S., Hu, S., Feng, T., Ge, G.: The weight distribution of a class of cyclic codes related to Hermitian forms graphs. IEEE Trans. Inf. Theory 59(5), 3064–3067 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Luo, J., Feng, K.: On the weight distributions of two classes of cyclic codes. IEEE Trans. Inf. Theory 54(12), 5332–5344 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Luo, J., Tang, Y., Wang, H.: Cyclic codes and sequences: the generalized Kasami case. IEEE Trans. Inf. Theory 56(5), 2130–2142 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ma, C., Zeng, L., Liu, Y., Feng, D., Ding, C.: The weight enumerator of a class of cyclic codes. IEEE Trans. Inf. Theory 57(1), 397–402 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    McGuire, G.: On three weights in cyclic codes with two zeros. Finite Fields Appl. 10(1), 97–104 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Myerson, G.: Period polynomials and Gauss sums for finite fields. Acta Arith. 39(3), 251–264 (1981)MathSciNetGoogle Scholar
  24. 24.
    Sharma, A., Bakshi, G.K.: The weight distribution of some irreducible cyclic codes. Finite Fields Appl. 18(1), 144–159 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tang, C., Qi, Y., Xu, M., Wang, B., Yang, Y.: A note on weight distributions of irreducible cyclic codes. In: International Conference on Information and Communications Technologies (ICT 2014), Nanjing, China, 1–8 May 2014Google Scholar
  26. 26.
    Van Der Vlugt, M.: Hasse–Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes. J. Number Theory 55(2), 145–159 (1995)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Vega, G.: The weight distribution of an extended class of reducible cyclic codes. IEEE Trans. Inf. Theory 58(7), 4862–4869 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: The weight distributions of cyclic codes and elliptic curves. IEEE Trans. Inf. Theory 58(12), 7253–7259 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Xia, Y., Helleseth, T., Li, C.: Some new classes of cyclic codes with three or six weights. Adv. Math. Commun. 9(1), 23–36 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Xiong, M.: The weight distributions of a class of cyclic codes. Finite Fields Appl. 18(5), 933–945 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Xiong, M.: The weight distributions of a class of cyclic codes II. Des. Codes Cryptogr. 72(3), 511–528 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xiong, M.: The weight distributions of a class of cyclic codes III. Finite Fields Appl. 21, 84–96 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang, J., Xiong, M., Ding, C., Luo, J.: Weight distribution of a class of cyclic codes with arbitrary number of zeros. IEEE Trans. Inf. Theory 59(9), 5985–5993 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yuan, J., Carlet, C., Ding, C.: The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 52(2), 712–717 (2006)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: The weight distribution of a class of \(p\)-ary cyclic codes. Finite Fields Appl. 16(1), 56–73 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhou, Z., Ding, C.: A class of three-weight cyclic codes. Finite Fields Appl. 25, 79–93 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhou, Z., Ding, C., Luo, J., Zhang, A.: A family of five-weight cyclic codes and their weight enumerators. IEEE Trans. Inf. Theory 59(10), 6674–6682 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MathematicsSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Mathematical SciencesQufu Normal UniversityQufuPeople’s Republic of China

Personalised recommendations