Cohomological learning of periodic motion

  • Mikael Vejdemo-Johansson
  • Florian T. Pokorny
  • Primoz Skraba
  • Danica Kragic
Original Paper

Abstract

This work develops a novel framework which can automatically detect, parameterize and interpolate periodic motion patterns obtained from a motion capture sequence. Using our framework, periodic motions such as walking and running gaits or any motion sequence with periodic structure such as cleaning, dancing etc. can be detected automatically and without manual marking of the period start and end points. Our approach constructs an intrinsic parameterization of the motion and is computationally fast. Using this parameterization, we are able generate prototypical periodic motions. Additionally, we are able to interpolate between various motions, yielding a rich class of ‘mixed’ periodic actions. Our approach is based on ideas from applied algebraic topology. In particular, we apply a novel persistent cohomology based method for the first time in a graphics application which enables us to recover circular coordinates of motions. We also develop a suitable notion of homotopy which can be used to interpolate between periodic motion patterns. Our framework is directly applicable to the construction of walk cycles for animating character motions with motion graphs or state machine driven animation engines and processed our examples at an average speed of 11.78 frames per second

Graphical abstract

Keywords

Periodic motions Circular coordinates Persistent cohomology   Walk cycles Gait parameterization Topological data analysis 

References

  1. 1.
    CMU Graphics Lab: CMU graphics lab motion capture database. http://mocap.cs.cmu.edu/ (2012). Accessed Nov 2012
  2. 2.
    Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. In: SIGGRAPH, pp. 81:1–81:9 (2009)Google Scholar
  3. 3.
    Yin, K., Coros, S., Beaudoin, P., van de Panne, M.: Continuation methods for adapting simulated skills. In: SIGGRAPH, pp. 81:1–81:7 (2008)Google Scholar
  4. 4.
    Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57, 469–483 (2009)CrossRefGoogle Scholar
  5. 5.
    Unity Technologies (2013) Unity 4. Commercial SoftwareGoogle Scholar
  6. 6.
    Witkin, A., Kass, M.: Spacetime constraints. In: SIGGRAPH, pp. 159–168 (1988)Google Scholar
  7. 7.
    Rose, C., Guenter, B., Bodenheimer, B., Cohen, M.F.: Efficient generation of motion transitions using spacetime constraints. In: SIGGRAPH, pp. 147–154 (1996)Google Scholar
  8. 8.
    Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22, 417–426 (2003)CrossRefGoogle Scholar
  9. 9.
    Liu, C.K., Hertzmann, A., Popović, Z.: Composition of complex optimal multi-character motions. In: SCA ’06, pp. 215–222 (2006)Google Scholar
  10. 10.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: SIGGRAPH, pp. 473–482 (2002)Google Scholar
  11. 11.
    Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. 21, 483–490 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. In: SIGGRAPH, pp. 559–568 (2004)Google Scholar
  13. 13.
    Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. ACM Trans. Graph. 26 (2007)Google Scholar
  14. 14.
    Guo, S., Robergé, J.: A high-level control mechanism for human locomotion based on parametric frame space interpolation. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation ’96, pp. 95–107 (1996)Google Scholar
  15. 15.
    Wiley, D.J., Hahn, J.K.: Interpolation synthesis for articulated figure motion. In: VRAIS ’97 (1997)Google Scholar
  16. 16.
    Beaudoin, P., Coros, S., van de Panne, M., Poulin, P.: Motion-motif graphs. In: SCA ’08, pp. 117–126 (2008)Google Scholar
  17. 17.
    Gleicher, M., Shin, H.J., Kovar, L., Jepsen, A.: Snap-together motion: assembling run-time animations. In: SIGGRAPH, pp. 52:1–52:9 (2008)Google Scholar
  18. 18.
    Pullen, K., Bregler, C.: Animating by multi-level sampling. In: Computer Animation, pp. 36–42 (2000)Google Scholar
  19. 19.
    Mukai, T.: Motion rings for interactive gait synthesis. In: I3D ’11, pp. 125–132 (2011)Google Scholar
  20. 20.
    Peternel, M., Leonardis, A.: Visual learning and recognition of a probabilistic spatio-temporal model of cyclic human locomotion. In: ICPR, vol. 4, pp. 146–149 (2004)Google Scholar
  21. 21.
    Lamar-Len, J., Garca-Reyes, E., Gonzalez-Diaz, R.: Human gait identification using persistent homology. Prog. Pattern Recognit. Image Anal. Comput. Vision Appl. 7441, 244–251 (2012)CrossRefGoogle Scholar
  22. 22.
    Vasudevan, R., Ames, A., Bajcsy, R.: Persistent homology for automatic determination of human-data based cost of bipedal walking. Nonlinear Anal. Hybrid Syst. 7(1), 101–115 (2013). (IFAC World Congress 2011)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Takens, F.: Detecting strange attractors in turbulence. Dyn. Syst. Turbul. Warwick 1980, 366–381 (1981)Google Scholar
  24. 24.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  25. 25.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS Press, New York (2009)Google Scholar
  26. 26.
    Morozov, D., de Silva, V., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete Comput. Geom. 45(4), 737–759 (2011)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Morozov, D.: Dionysus. http://www.mrzv.org/software/dionysus/ (2011). Accessed Nov 2012
  28. 28.
    Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python. http://www.scipy.org/ (2001)
  29. 29.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MATHMathSciNetGoogle Scholar
  30. 30.
    de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In: Symposium on Point-Based Graphics (2004)Google Scholar
  31. 31.
    Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29, 551–559 (1983)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. In: Proceedings of the VVS, pp. 75–82 (1992)Google Scholar
  33. 33.
    Barbic, J., Zhao, Y.: mocapPlayer. http://graphics.cs.cmu.edu/software/mocapPlayer.zip (2012). Accessed Nov 2012
  34. 34.
    Autodesk (2013) Maya. Commercial softwareGoogle Scholar
  35. 35.
    Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput. 51(184), 699–706 (1988)CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    Craig, J.: Introduction to Robotics: Mechanics and Control. Prentice Hall, Englewood Cliffs (2004)Google Scholar
  37. 37.
    Lee, J., Chai, J., Reitsma, P.S., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. (TOG) 21, 491–500 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mikael Vejdemo-Johansson
    • 1
    • 2
  • Florian T. Pokorny
    • 2
  • Primoz Skraba
    • 1
  • Danica Kragic
    • 2
  1. 1.AI LaboratoryJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Computer Vision and Active Perception LabKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations