Advertisement

Self-dual codes from 3-class association schemes

  • M. Bilal
  • J. BorgesEmail author
  • S. T. Dougherty
  • C. Fernández-Córdoba
Original Paper
  • 186 Downloads

Abstract

3-Class association schemes are used to construct binary self-dual codes. We use the pure and bordered construction to get self-dual codes starting from the adjacency matrices of symmetric and non-symmetric 3-class association schemes. In some specific cases, we also study constructions of self-dual codes over \({\mathbb {Z}}_k\). For symmetric 3-class association schemes, we focus on the rectangular scheme and association schemes derived from symmetric designs.

Keywords

Non-symmetric association schemes Symmetric association schemes Self-dual codes Rectangular scheme  Symmetric designs 

References

  1. 1.
    Bannai, E., Dougherty, S.T., Harada, M., Oura, M.: Type II codes, even unimodular lattices, and invariant rings. IEEE Trans. Inform. Theory 45(4), 1194–1205 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bouyuklieva, S.: A method for constructing self-dual codes with an automorphism of order 2. IEEE Trans. Inform. Theory 46(2), 496–504 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bouyuklieva, S., Bouyukliev, I.: An algorithm for classification of binary self-dual codes. IEEE Trans. Inform. Theory 58(6), 3933–3940 (2012)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bouyuklieva, S., Varbanov, Z.: Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Adv. Math. Commun. 5(2), 191–198 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dougherty, S.T., Gulliver, T.A., Ramadurai, R.: Symmetric designs and self-dual codes over rings. Ars Combin. 85, 193–209 (2007)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Dougherty, S.T., Kim, J.L., Kulosman, H., Liu, Hongwei: Self-dual codes over commutative Frobenius rings. Finite Fields Appl. 16(1), 14–26 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dougherty, S.T., Kim, J.L., Liu, H.: Constructions of self-dual codes over finite commutative chain rings. Int. J. Inf. Coding Theory 1(2), 171–190 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dougherty, S.T., Kim, J.L., Solé, P.: Double circulant codes from two class association schemes. AMC 1(1), 45–64 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Higman, D.G.: Coherent configurations. Geom. Dedicata 4, 1–32 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Huffman, W.C., Pless, V.S.: Fundamentals of Error-correcting Codes. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hughes, D.R., Piper, F.C.: Design Theory. Cambridge University Press, Cambridge (1985)CrossRefzbMATHGoogle Scholar
  12. 12.
    Jørgensen, L.K.: Non-symmetric 3-class association schemes: Research Report Series; R-2005-13 Aalborg Universitetsforlag (2005)Google Scholar
  13. 13.
    Karadeniz, S., Yildiz, B.: Double-circulant and bordered-double-circulant constructions for self-dual codes over R2. Adv. Math. Commun. 6(2), 193–202 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Lam, C.W.H.: The search for a finite projective plane of order 10 [MR1103185 (92b:51013)]. Organic mathematics (Burnaby, BC, 1995), pp. 335–355, CMS Conf. Proc., 20, Am. Math. Soc., Providence, RI (1997)Google Scholar
  15. 15.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1981)Google Scholar
  16. 16.
    Nebe, G., Rains, E.M., Sloane, N.J.: Self-dual codes and invariant theory. Algorithms and Computation in Mathematics, 17. Springer-Verlag, Berlin, xxviii+430 pp. ISBN: 978-3-540-30729-7; 3-540-30729-X (2006)Google Scholar
  17. 17.
    Rains, E., Sloane, N.J.A.: Self-dual Codes in the Handbook of Coding Theory, V.S. Pless and W.C. Huffman, pp. 177–294. Elsevier, Amsterdam (1998)Google Scholar
  18. 18.
    Solé, P.: Self-dual Codes and Self-dual Designs. IMA Volumes 20, pp. 188–192. Springer, Berlin (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. Bilal
    • 1
  • J. Borges
    • 1
    Email author
  • S. T. Dougherty
    • 2
  • C. Fernández-Córdoba
    • 1
  1. 1.Department of Information and Communications EngineeringUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Department of MathematicsUniversity of ScrantonScrantonUSA

Personalised recommendations