Advertisement

An extension of the noncommutative Bergman’s ring with a large number of noninvertible elements

  • Joan-Josep ClimentEmail author
  • Pedro R. Navarro
  • Leandro Tortosa
Original Paper

Abstract

For a prime number \(p\), Bergman (Israel J Math 18:257–277, 1974) established that \(\mathrm {End}(\mathbb {Z}_{p} \times \mathbb {Z}_{p^{2}})\) is a semilocal ring with \(p^{5}\) elements that cannot be embedded in matrices over any commutative ring. In an earlier paper Climent et al. (Appl Algebra Eng Commun Comput 22(2):91–108, 2011), the authors presented an efficient implementation of this ring, and introduced a key exchange protocol based on it. This protocol was cryptanalyzed by Kamal and Youssef (Appl Algebra Eng Commun Comput 23(3–4):143–149, 2012) using the invertibility of most elements in this ring. In this paper we introduce an extension of Bergman’s ring, in which only a negligible fraction of elements are invertible, and propose to consider a key exchange protocol over this ring.

Keywords

Noncommutative ring Noninvertible element Key exchange protocol Endomorphism Bergman ring 

Notes

Acknowledgments

The authors are very grateful to the anonymous reviewers for their comments and suggestions which led to significant improvements.

References

  1. 1.
    Banin, M., Tsaban, B.: The discrete logarithm problem in Bergman’s non-representable ring. J. Math. Cryptol. 6(2), 171–182 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Banin, M., Tsaban, B.: A reduction of semigroup DLP to classic DLP. arXiv:cs.CR/1310.7903v4, November 2013Google Scholar
  3. 3.
    Bergman, G.M.: Some examples in PI ring theory. Israel J. Math. 18, 257–277 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Climent, J.-J., Navarro, P.R., Tortosa, L.: On the arithmetic of the endomorphisms ring \({\rm End}(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}})\). Appl. Algebra Eng. Commun. Comput. 22(2), 91–108 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Climent, J.-J., Navarro, P.R., Tortosa, L.: Key exchange protocols over noncommutative rings. The case of \({\rm End}(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}})\). Int. J. Comput. Math. 89(13–14), 1753–1763 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kamal, A.A., Youssef, A.M.: Cryptanalysis of a key exchange protocol based on the endomorphisms ring \({\rm End}(\mathbb{Z}_{p} \times \mathbb{Z}_{p}^{2})\). Appl. Algebra Eng. Commun. Comput. 23(3–4), 143–149 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Magliveras, S.S., Stinson, D.R., van Trung, T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15(4), 285–297 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Myasnikov, A.G., Shpilrain, V., Ushakov, A.: Group Based Cryptography. Birkhäuser, Basel, Switzerland (2008)zbMATHGoogle Scholar
  9. 9.
    Sakalauskas, E., Burba, T.: Basic semigroup primitive for cryptographic session key exchange protocol (SKEP). Inf. Technol. Control 28(3), 76–80 (2003)Google Scholar
  10. 10.
    Shpilrain, V., Ushakov, A.: A new key exchange protocol based on the decomposition problem. Contemp. Math. 418, 161–167 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sidelnikov, V.M., Cherepnev, M.A., Yashchenko, V.V.: Systems of open distribution of keys on the basis of noncommutative semigroups. Russ. Acad. Sci. Dokl. Math. 48(2), 384–386 (1994)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joan-Josep Climent
    • 1
    Email author
  • Pedro R. Navarro
    • 2
  • Leandro Tortosa
    • 2
  1. 1.Departament d’Estadística i Investigació OperativaUniversitat d’AlacantAlacantSpain
  2. 2.Departament de Ciència de la Computació i Intel∙ligència ArtificialUniversitat d’AlacantAlacantSpain

Personalised recommendations