Reducing the size and number of linear programs in a dynamic Gröbner basis algorithm

Original Paper


The goal of the Dynamic Buchberger Algorithm is to compute a Gröbner basis quickly by adjusting the term ordering as the computation proceeds. A known problem concerns the size and number of linear progams to be solved when refining the ordering. This paper describes two methods for reducing both their size and number.


Gröbner bases Dynamic Buchberger algorithm Boundary vectors Term ordering 

Mathematics Subject Classification (2010)

13P10 68W30 


  1. 1.
    Bigatti, A.M., Caboara, M., Robbiano, L.: Computing inhomogeneous Gröbner bases. J. Symb. Comput. 46(5), 498–510 (2010). doi:10.1016/j.jsc.2010.10.002 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bosse, H., Gärtner, C., Golubitsky, O.: Ideal specific elimination orders from a star-shaped region. J. Symb. Comput. 56, 69–79 (2013)CrossRefMATHGoogle Scholar
  3. 3.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalem Polynomideal (An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). Ph.D. thesis, Mathematical Institute, University of Innsbruck, Austria (1965). English translation published in the Journal of Symbolic Computation (2006) 475–511Google Scholar
  4. 4.
    Caboara, M.: A dynamic algorithm for Gröbner basis computation. In: ISSAC’93, pp. 275–283. ACM Press, New york (1993)Google Scholar
  5. 5.
    Eder, C., Perry, J.: Signature-based algorithms to compute Gröbner bases. In: Proceedings of the 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC’11), pp. 99–106. ACM Press (2011). doi:10.1145/1993886.1993906. Preprint available online at
  6. 6.
    Faugére, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J Pure Applied Algebra 139(1–3), 61–88 (1999)Google Scholar
  7. 7.
    Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero F5. In: International Symposium on Symbolic and Algebraic Computation Symposium—ISSAC 2002, Villeneuve d’Ascq, France, pp. 75–82 (2002). Revised version downloaded from
  8. 8.
    Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C.: “One sugar cube, please” OR Selection strategies in the Buchberger algorithm. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, pp. 49–54. ACM Press, New York (1991)Google Scholar
  9. 9.
    Golubitsky, O.: Converging term order sequences and the dynamic Buchberger algorithm (in preparation). Preprint received in private communicationGoogle Scholar
  10. 10.
    Gritzmann, P., Sturmfels, B.: Minkowski addition of polytopes: computational complexity and applications to Gröbner bases. SIAM J. Disc. Math. 6(2), 246–269 (1993)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Klee, V., Minty, G.: How good is the simplex algorithm? In: Inequalities III (Proceedings of the Third Symposium on Inequalities), pp. 159–175. Academic Press, New York (1972)Google Scholar
  12. 12.
    Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symb. Comput. 6, 183–208 (1988)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Stein, W.: Sage: Open Source Mathematical Software (Version 4.8). The Sage, Group (2012).
  14. 14.
    Tran, Q.N.: A new class of term orders for elimination. J. Symb. Comput. 42(5), 533–548 (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Pisa56127 PisaItaly
  2. 2.Department of MathematicsUniversity of Southern MississippiHattiesburg USA

Personalised recommendations