Polynomial root finding over local rings and application to error correcting codes

  • Jérémy Berthomieu
  • Grégoire Lecerf
  • Guillaume Quintin
Original Paper


This article is devoted to algorithms for computing all the roots of a univariate polynomial with coefficients in a complete commutative Noetherian unramified regular local domain, which are given to a fixed common finite precision. We study the cost of our algorithms, discuss their practical performances, and apply our results to the Guruswami and Sudan list decoding algorithm over Galois rings.


Polynomial root finding Galois ring List decoding  Guruswami–Sudan algorithm 

Mathematics Subject Classification (2000)

12Y05 94B05 



This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX project, and by the Digiteo 2009-36HD grant of the Région Île-de-France. We would like to thank Daniel Augot and both referees for their useful comments on this article.


  1. 1.
    Alekhnovich, M.: Linear Diophantine equations over polynomials and soft decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 51(7), 2257–2265 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Armand, M.A.: Improved list decoding of generalized Reed–Solomon and alternant codes over rings. In: IEEE International Symposium on Information Theory 2004, (ISIT 2004), p. 384 (2004)Google Scholar
  3. 3.
    Armand, M.A.: List decoding of generalized Reed–Solomon codes over commutative rings. IEEE Trans. Inf. Theory 51(1), 411–419 (2005)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Augot, D., Barbier, M., Couvreur, A.: List-decoding of binary Goppa codes up to the binary Johnson bound. In: Information Theory Workshop (ITW), 2011 IEEE, pp. 229–233 (2011)Google Scholar
  5. 5.
    Augot, D., Zeh, A.: On the Roth and Ruckenstein equations for the Guruswami–Sudan algorithm. In: IEEE International Symposium on Information Theory-ISIT 2008, pp. 2620–2624. IEEE, Toronto, Canada (2008)Google Scholar
  6. 6.
    Bartley, K.G.: Decoding algorithms for algebraic geometric codes over rings. Ph.D. thesis, University of Nebraska (2006)Google Scholar
  7. 7.
    Berlekamp, E.R., Welch, L.R.: Error correction for algebraic block codes. Patent 4633470 (1986)Google Scholar
  8. 8.
    Berlekamp, E.R.: Algebraic Coding Theory. M-6. Aegean Park Press (1984)Google Scholar
  9. 9.
    Berthomieu, J., van der Hoeven, J., Lecerf, G.: Relaxed algorithms for \(p\)-adic numbers. J. Théor. Nombres Bordeaux. 23(3), 541–577 (2011)Google Scholar
  10. 10.
    Bini, D., Pan, V.Y.: Polynomial and Matrix Computations. Fundamental Algorithms. Progress in Theoretical Computer Science, vol. 1. Birkhäuser, Basel (1994)CrossRefGoogle Scholar
  11. 11.
    Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complex. 21(4), 420–446 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inf. 28, 693–701 (1991)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. I. J. Complex. 2(4), 271–294 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chudnovsky, D.V., Chudnovsky, G.V.: On expansion of algebraic functions in power and Puiseux series. II. J. Complex. 3(1), 1–25 (1987)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cohen, I.S.: On the structure and ideal theory of complete local rings. Trans. Am. Math. Soc. 59, 54–106 (1946)CrossRefMATHGoogle Scholar
  16. 16.
    Duval, D.: Rational Puiseux expansions. Compos. Math. 70(2), 119–154 (1989)MathSciNetMATHGoogle Scholar
  17. 17.
    Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. Roy. Soc. Lond. Ser. A. 248, 407–432 (1956)CrossRefMATHGoogle Scholar
  18. 18.
    Fürer, M.: Faster integer multiplication. In: Proceedings of the Thirty-Ninth ACM Symposium on Theory of Computing (STOC 2007), pp. 57–66. ACM (2007)Google Scholar
  19. 19.
    Gao, S., Shrokrollahi, M.A.: Computing roots of polynomials over function fields of curves. In: Joyner, D. (ed.) Coding Theory and Cryptography: From Enigma and Geheimschreiber to Quantum Theory, pp. 214–228. Springer, Berlin (2000)CrossRefGoogle Scholar
  20. 20.
    Gao, S.: A new algorithm for decoding Reed–Solomon codes. In: Bhargava, V., Poor, H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network Security, The Springer International Series in Engineering and Computer Science, vol. 712, pp. 55–68. Springer, US (2003)CrossRefGoogle Scholar
  21. 21.
    Gaudry, P., Thomé, E.: MPFQ, a finite field library. Available at (2008)
  22. 22.
    Granlund, T., et al.: GMP, the GNU multiple precision arithmetic library. Available at (1991)
  23. 23.
    Griffiths, D.: Series expansions of algebraic functions. In: Bosma, W., Poorten, A. (eds.) Computational Algebra and Number Theory, Mathematics and Its Applications, vol. 325, pp. 267–277. Springer, Netherlands (1995)Google Scholar
  24. 24.
    Guruswami, V., Sudan, M.: Improved decoding of Reed–Solomon and algebraic-geometric codes. IEEE Trans. Inf. Theory 45, 1757–1767 (1998)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hallouin, É.: Computing local integral closures. J. Symb. Comput. 32(3), 211–230 (2001)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Henry, J.P., Merle, M.: Complexity of computation of embedded resolution of algebraic curves. In: Proceedings of Eurocal 87, Lecture Notes in Computer Science, vol. 378, 381–390. Springer (1987)Google Scholar
  27. 27.
    Iwami, M.: Extension of expansion base algorithm for multivariate analytic factorization including the case of singular leading coefficient. SIGSAM Bull. 39(4), 122–126 (2005)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Kedlaya, K.S.: The algebraic closure of the power series field in positive characteristic. Proc. Am. Math. Soc. 129(12), 3461–3470 (2001)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kötter, R.: On algebraic decoding of algebraic-geometric and cycling codes. Ph.D. thesis, Linköping University, Sweden (1996)Google Scholar
  30. 30.
    Kötter, R., Vardy, A.: Algebraic soft-decision decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 49(11), 2809–2825 (2003)CrossRefGoogle Scholar
  31. 31.
    Kuo, T.C.: Generalized Newton-Puiseux theory and Hensel’s lemma in \({\mathbb{C}}[[x, y]]\). Canad. J. Math. 41(6), 1101–1116 (1989)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Lang, S.: Algebra, Graduate Texts in Mathematics, vol. 211, 3rd edn. Springer, Berlin (2002)Google Scholar
  33. 33.
    Lecerf, G.: Fast separable factorization and applications. Appl. Algebra Eng. Commun. Comput. 19(2), 135–160 (2008)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms. Wiley-Interscience, New York (2005)CrossRefGoogle Scholar
  35. 35.
    Poteaux, A., Rybowicz, M.: Complexity bounds for the rational Newton-Puiseux algorithm over finite fields. Appl. Algebra Eng. Commun. Comput. 22(3), 187–217 (2011)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Raghavendran, R.: Finite associative rings. Compos. Math. 21, 195–229 (1969)MathSciNetMATHGoogle Scholar
  37. 37.
    Refslund Nielsen, R., Høholdt, T.: Decoding Reed–Solomon codes beyond half the minimum distance. In: Buchmann, J., Høholdt, T., Stichtenoth, H., Tapia-Recillas, H. (eds.) Coding Theory, Cryptography and Related Areas, pp. 221–236. Springer, Berlin (2000)CrossRefGoogle Scholar
  38. 38.
    Roth, R.M., Ruckenstein, G.: Efficient decoding of Reed–Solomon codes beyond half the minimum distance. In: IEEE International Symposium on Information Theory 1998, p. 56 (1998)Google Scholar
  39. 39.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7, 281–292 (1971)CrossRefMATHGoogle Scholar
  40. 40.
    Sudan, M.: Decoding of Reed–Solomon codes beyond the error-correction bound. J. Complex. 13(1), 180–193 (1997)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Truong, T.K., Eastman, W.L., Reed, I.S., Hsu, I.S.: Simplified procedure for correcting both errors and erasures of Reed–Solomon code using Euclidean algorithm. IEE Proc. Comput. Digit. Tech. 135(6), 318–324 (1988)CrossRefGoogle Scholar
  42. 42.
    van der Hoeven, J., et al.: Mathemagix. Software available from (2002)
  43. 43.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)Google Scholar
  44. 44.
    von zur Gathen, J.: Hensel and Newton methods in valuation rings. Math. Comp. 42(166), 637–661 (1984)Google Scholar
  45. 45.
    Walker, R.J.: Algebraic Curves. Springer, New York (1978). Reprint of the 1950 editionGoogle Scholar
  46. 46.
    Walker, J.L.: Algebraic geometric codes over rings. J. Pure Appl. Algebra 144(1), 91–110 (1999)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Walsh, P.G.: On the complexity of rational Puiseux expansions. Pac. J. Math. 188(2), 369–387 (1999)CrossRefMATHGoogle Scholar
  48. 48.
    Walsh, P.G.: A polynomial-time complexity bound for the computation of the singular part of a Puiseux expansion of an algebraic function. Math. Comput. 69(231), 1167–1182 (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jérémy Berthomieu
    • 1
  • Grégoire Lecerf
    • 2
  • Guillaume Quintin
    • 2
  1. 1.UPMC, Univ. Paris 6, LIP6-INRIA Paris–Rocquencourt, POLSYS-CNRS UMR 7606, LIP6Paris Cedex 5France
  2. 2.Laboratoire d’InformatiqueCNRS UMR 7161, LIXPalaiseau CedexFrance

Personalised recommendations