Advertisement

List decoding of repeated codes

  • Fernando Hernando
  • Michael O’Sullivan
  • Diego Ruano
Original Paper
  • 162 Downloads

Abstract

Assuming that we have a soft-decision list decoding algorithm of a linear code, a new hard-decision list decoding algorithm of its repeated code is proposed in this article. Although repeated codes are not used for encoding data, due to their parameters, we show that they have a good performance with this algorithm. We compare, by computer simulations, our algorithm for the repeated code of a Reed–Solomon code against a decoding algorithm of a Reed–Solomon code. Finally, we estimate the decoding capability of the algorithm for Reed–Solomon codes and show that performance is somewhat better than our estimates.

Keywords

Linear codes Matrix-product codes Decoding algorithm  Minimum distance Quasi-cyclic codes 

Mathematics Subject Classification (2000)

94B05 94B35 

References

  1. 1.
    Alekhnovich, M.: Linear Diophantine equations over polynomials and soft decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 51(7), 2257–2265 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Dumer I.I.: Concatenated codes and their multilevel generalizations. In: Pless, V. Huffman W. C. (eds.) Handbook of Coding Theory, vol. I, II, pp. 1911–1988. North-Holland, Amsterdam (1998)Google Scholar
  4. 4.
    Elias, P.: List decoding for noisy channels. Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Mass., Rep. No. 335 (1957)Google Scholar
  5. 5.
    Guruswami, V., Sudan, M.: Improved decoding of Reed–Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Koetter, R., Vardy, A.: Algebraic soft-decision decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory 49(11), 2809–2825 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lally, K.: Quasicyclic codes—some practical issues. In: Proceedings. 2002 IEEE International Symposium on Information Theory (2002)Google Scholar
  8. 8.
    Lee, K., O’Sullivan, M.E.: An interpolation algorithm using Groebner bases for soft-decision decoding of Reed–Solomon codes. In: Proceedings. 2006 IEEE International Symposium on Information Theory, vol. 7, pp. 2032–2036 (2006)Google Scholar
  9. 9.
    Lee, K., O’Sullivan, M.E.: List decoding of Reed–Solomon codes from a Gröbner basis perspective. J. Symb. Comput. 43(9), 645–658 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, vol. 16. North-Holland Publishing Co., North-Holland Mathematical Library, Amsterdam (1977)Google Scholar
  11. 11.
    Sudan, M.: Decoding of Reed–Solomon codes beyond the error-correction bound. J. Complexity. 13(1), 180–193 (1997)Google Scholar
  12. 12.
    Wozencraft, J.M.: List decoding. In: Quarterly Progress Report, pp. 90–95. Research Laboratory of Electronics, MIT, Cambridge, MA (1958)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fernando Hernando
    • 1
    • 2
  • Michael O’Sullivan
    • 3
  • Diego Ruano
    • 4
  1. 1.Department of MathematicsUniversidad Jaume ICampus Riu Sec Castellón de la PlanaSpain
  2. 2.Department of Mathematical SciencesAalborg UniversityAalborgDenmark
  3. 3.Department of Mathematics and StatisticsSan Diego State UniversitySan DiegoUSA
  4. 4.Department of Mathematical SciencesAalborg UniversityAalborg ØstDenmark

Personalised recommendations