Multi-point evaluation in higher dimensions

  • Joris van der Hoeven
  • Éric Schost


In this paper, we propose efficient new algorithms for multi-dimensional multi-point evaluation and interpolation on certain subsets of so called tensor product grids. These point-sets naturally occur in the design of efficient multiplication algorithms for finite-dimensional \(\mathcal C \)-algebras of the form \(\mathcal A =\mathcal C [x_1, {\ldots }, x_n] / I\), where \(I\) is generated by monomials of the form \(x_1^{i_1} {\cdots } x_n^{i_n}\); one particularly important example is the algebra of truncated power series \(\mathcal C [x_1, {\ldots }, x_n] / (x_1, {\ldots }, x_n)^d\). Similarly to what is known for multi-point evaluation and interpolation in the univariate case, our algorithms have quasi-linear time complexity. As a known consequence Schost (ISSAC’05, ACM, New York, NY, pp 293–300, 2005), we obtain fast multiplication algorithms for algebras \(\mathcal A \) of the above form.


Multi-point evaluation Multi-point interpolation Algorithm Complexity Power series multiplication 

Mathematics Subject Classification (2000)

12Y05 68W30 68W40 13P10 65F99 


  1. 1.
    Bini, D., Pan, V.Y.: Polynomial and Matrix Computations, vol. 1. Birkhäuser Boston Inc., Boston, MA. Fundamental algorithms (1994)Google Scholar
  2. 2.
    Borodin, A., Moenck, R.T.: Fast modular transforms. J. Comput. Syst. Sci. 8, 366–386 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complex. 21(4), 420–446 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Canny, J., Kaltofen, E., Lakshman, Y.: Solving systems of non-linear polynomial equations faster. In: Gonnet, G. (ed.) ISSAC ’89, pp. 121–128. ACM, Portland, Oregon (1989)Google Scholar
  5. 5.
    Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28(7), 693–701 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    von zur Gathen J., Gerhard J.: Modern Computer Algebra, 2-nd edition. Cambridge University Press, Cambridge (2003)Google Scholar
  7. 7.
    van der Hoeven, J.: Relax, but don’t be too lazy. J. Symbolic Comput. 34, 479–542 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    van der Hoeven J.: The truncated Fourier transform and applications. In: Gutierrez, J. (ed.) ISSAC ’04, pp. 290–296, University of Cantabria, Santander, Spain, July 4–7 ACM (2004)Google Scholar
  9. 9.
    van der Hoeven J.: Notes on the Truncated Fourier Transform. Technical Report 2005–5, Université Paris-Sud, Orsay, France (2005)Google Scholar
  10. 10.
    van der Hoeven J., Lecerf G.: On the bit-complexity of sparse polynomial multiplication. Technical Report, Arxiv (2009)
  11. 11.
    Lecerf, G., Schost, É.: Fast multivariate power series multiplication in characteristic zero. SADIO Electron. J. Inf. Oper. Res. 5(1), 1–10 (2003)zbMATHGoogle Scholar
  12. 12.
    Mora, F.: De nugis groebnerialium 2: applying Macaulay’s trick in order to easily write a Gröbner basis. Appl. Algebra Eng. Commun. Comput. 13(6), 437–446 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Mühlbach, G.: On multivariate interpolation by generalized polynomials on subsets of grids. Computing 40(3), 201–215 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Pan, V.: Simple multivariate polynomial multiplication. J. Symb. Comput. 18(3), 183–186 (1994)zbMATHCrossRefGoogle Scholar
  15. 15.
    Sauer, T.: Lagrange interpolation on subgrids of tensor product grids. Math. Comput. 73(245), 181–190 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Schost, É.: Multivariate power series multiplication. In: Kauers, M. (ed.) ISSAC ’05, pp. 293–300. ACM, New York, NY (2005)Google Scholar
  17. 17.
    Werner, H.: Remarks on Newton type multivariate interpolation for subsets of grids. Computing 25(2), 181–191 (1980)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire d’informatiqueUMR 7161 CNRSPalaiseau CedexFrance
  2. 2.Computer Science DepartmentThe University of Western OntarioLondonCanada

Personalised recommendations