About the algebraic solutions of smallest enclosing cylinders problems

Original Paper


Given n points in Euclidean space E d , we propose an algebraic algorithm to compute the best fitting (d−1)-cylinder. This algorithm computes the unknown direction of the axis of the cylinder. The location of the axis and the radius of the cylinder are deduced analytically from this direction. Special attention is paid to the case d = 3 when n = 4 and n = 5. For the former, the minimal radius enclosing cylinder is computed algebrically from constrained minimization of a quartic form of the unknown direction of the axis. For the latter, an analytical condition of existence of the circumscribed cylinder is given, and the algorithm reduces to find the zeroes of an one unknown polynomial of degree at most 6. In both cases, the other parameters of the cylinder are deduced analytically. The minimal radius enclosing cylinder is computed analytically for the regular tetrahedron and for a trigonal bipyramids family with a symmetry axis of order 3.


Best fitting cylinder Smallest enclosing cylinder Minimal cylinder Circumscribed cylinder through five points Numerical algorithm 

Mathematics Subject Classification (2010)

51M04 51N15 65D10 65K05 90C26 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bottema O., Veldkamp G.R.: On the lines in space with equal distances to n given points. Geom. Dedic. 6, 121–129 (1977)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Brandenberg R., Theobald T.: Algebraic methods for computing smallest enclosing and circumscribing cylinders of simplices. Appl. Algebra Eng. Commun. Comput. 14, 439–460 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brandenberg R., Theobald T.: Radii minimal projections of polytopes and constrained optimization of symmetric polynomials. Adv. Geom. 6, 71–83 (2006)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Devillers O., Mourrain B., Preparata F.P., Trebuchet P.: Circular cylinders through four or five points in space. Discrete Comput. Geom. 29, 83–104 (2003)MathSciNetMATHGoogle Scholar
  5. 5.
    Edelsbrunner, H.: Constructing convex hulls. In: Brauer, W., Rozenberg, G., Salomaa, A. (eds.) Algorithms in Combinatorial Geometry, Chap. 8, pp. 139–176. Springer, Berlin (1987)Google Scholar
  6. 6.
    Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A Descartes algorithm for polynomials with bit-stream coefficients. In: Computer Algebra in Scientific Computing: 8th International Workshop, CASC 2005, Kalamata, Greece, LNCS, 3718, 138–149 (2005)Google Scholar
  7. 7.
    Gill, P.E., Murray, W., Wright, M.H.: Non linear constraints. In: Practical Optimization, pp. 205–260. JAI Press, Emerald Group Publishing Ltd., London, 2008Google Scholar
  8. 8.
    Maehara H.: On congruent embeddings of a tetrahedron into a circular cylinder. Yokohama Math. J. 55, 171–177 (2010)MathSciNetMATHGoogle Scholar
  9. 9.
    Meslamani J.E., André F., Petitjean M.: Assessing the geometric diversity of cytochrome P450 ligand conformers by hierarchical clustering with a stop criterion. J. Chem. Inf. Model. 49, 330–337 (2009)CrossRefGoogle Scholar
  10. 10.
    Petitjean M.: Solving the geometric docking problem for planar and spatial sets. Internet Electron. J. Mol. Des. 1, 185–192 (2002)Google Scholar
  11. 11.
    Petitjean M.: From shape similarity to shape complementarity: toward a docking theory. J. Math. Chem. 35, 147–158 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Preparata, F.P., Shamos, M.I.: Convex hulls: basic algorithms. In: Computational Geometry, Chap. 3, pp. 95–149. Springer, Berlin (1985)Google Scholar
  13. 13.
    Schömer E., Sellen J., Teichmann M., Yap C.: Smallest enclosing cylinders. Algorithmica 27, 170–186 (2000)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Theobald T.: Visibility computations: from discrete algorithms to real algebraic geometry. DIMACS, Ser. Discrete Math. Theor. Comput. Sci. 60, 207–219 (2003)MathSciNetGoogle Scholar
  15. 15.
    Watson G.A.: Fitting enclosing cylinders to data in R n. Numer. Alg. 43, 189–196 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.MTi, INSERM UMR-S 973, University Paris 7Paris Cedex 13France

Personalised recommendations