Cryptanalysis of a key exchange protocol based on the endomorphisms ring End\({(\mathbb{Z}_{p} \times \mathbb{Z}_{p^2})}\)

  • Abdel Alim Kamal
  • Amr M. YoussefEmail author
Original Paper


Climent et al. (Appl Algebra Eng Commun Comput 22:91–108, 2011) identified the elements of the endomorphisms ring End\({(\mathbb{Z}_p \times \mathbb{Z}_{p^2})}\) with elements in a set, E p , of matrices of size 2 × 2, whose elements in the first row belong to \({\mathbb{Z}_{p}}\) and the elements in the second row belong to \({\mathbb{Z}_{p^2}}\). By taking advantage of matrix arithmetic, they proposed a key exchange protocol using polynomial functions over E p defined by polynomials in \({\mathbb{Z}[X]}\). In this note, we show that this protocol is insecure; it can be broken by solving a set of 10 consistent homogeneous linear equations in 8 unknowns over \({\mathbb{Z}_{p^2}}\).


Cryptanalysis Key exchange protocol Endomorphism Noncommutative ring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Climent J.J., Navarro P.R., Tortosa L.: On the arithmetic of the endomorphisms ring \({End(\mathbb{Z}_p \times Z_p^2)}\). Appl. Algebra Eng. Commun. Comput. 22, 91–108 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bergman G.M.: Examples in PI ring theory. Israel J. Math. 18, 257–277 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Myasnikov A., Shpilrain V., Ushakov A.: Non-Commutative Cryptography and Complexity of Group-Theoretic Problems in Mathematical, Surveys and Monographs. Vol. 177, American Mathematical Society, Providence (2011)Google Scholar
  4. 4.
    Tsaban, B.: Combinatorial Group Theory and Cryptography Bulletin (CGC Bulletin).
  5. 5.
    Stickel, E.: A new method for exchanging secret keys. In: Proceedings of the thrid International Conference on Information Technology and Applications (ICITA’05), pp. 426–430. Sidney (2005)Google Scholar
  6. 6.
    Shpilrain, V.: Cryptanalysis of Stickel’s key exchange scheme. In: Computer Science in Russia-CSR’08, Lecture Notes in Computer Science, vol. 5010, pp. 283–288. Springer, Berlin (2008)Google Scholar
  7. 7.
    Sramka M.: On the security of Stickel’s key exchange scheme. Comb. Math. Comb. Comput. 66, 151–159 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Mullan C.: Cryptanalysing variants of Stickel’s key agreement protocol. Math. Crypt. 4(4), 365–373 (2011)MathSciNetGoogle Scholar
  9. 9.
    Mullan, C.: Some Results in Group-Based Cryptography, Thesis submitted to the University of London for the Degree of Doctor of Philosophy (2011)Google Scholar
  10. 10.
    Cha, J.C., Ko, K.H., Lee, S., Han, J.W., Cheon, J.H.: An efficient implementation of braid groups. In: Advances in Cryptology-ASIACRYPT’01, Lecture Notes in Computer Science, vol. 2248, pp. 144–156. Springer, Berlin (2001)Google Scholar
  11. 11.
    Ko K.H., Lee S., Cheon J.H., Han J.W., Kang J.S., Park C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) Advances in Cryptology-CRYPTO’00, Lecture Notes in Computer Science, vol. 1880, pp. 166–183. Springer, Berlin (2000)Google Scholar
  12. 12.
    Hughes, J.: A linear algebraic attack on the AAFG1 braid group cryptosystem. In: Australian Conference on Information Security and Privacy-ACISP’02, Lecture Notes in Computer Science, vol. 2384, pp. 176–189. Springer, Berlin (2002)Google Scholar
  13. 13.
    Cheon, J.H., Jun, B.: A Polynomial Time Algorithm for the Braid Diffie-Hellman Conjugacy Problem. In: Advances in Cryptology-CRYPTO’03, Lecture Notes in Computer Science, vol. 2729, pp. 212–225. Springer, Berlin (2003)Google Scholar
  14. 14.
    Lee, E., Park, J.H.: Cryptanalysis of the public-key encryption based on braid groups. In: Advances in cryptology-EUROCRYPT’03, Lecture Notes in Computer Science, vol. 2656, pp. 477–490. Springer, Berlin (2003)Google Scholar
  15. 15.
    Kalka A.G.: Representation attacks on the braid Diffie-Hellman public key encryption. Appl. Algebra Eng. Commun. Comput. 17, 257–266 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering (ECE)Concordia UniversityMontrealCanada
  2. 2.Concordia Institute for Information Systems Engineering(CIISE)Concordia UniversityMontrealCanada

Personalised recommendations