Advertisement

Cryptanalysis of a key exchange protocol based on the endomorphisms ring End\({(\mathbb{Z}_{p} \times \mathbb{Z}_{p^2})}\)

  • Abdel Alim Kamal
  • Amr M. YoussefEmail author
Original Paper

Abstract

Climent et al. (Appl Algebra Eng Commun Comput 22:91–108, 2011) identified the elements of the endomorphisms ring End\({(\mathbb{Z}_p \times \mathbb{Z}_{p^2})}\) with elements in a set, E p , of matrices of size 2 × 2, whose elements in the first row belong to \({\mathbb{Z}_{p}}\) and the elements in the second row belong to \({\mathbb{Z}_{p^2}}\). By taking advantage of matrix arithmetic, they proposed a key exchange protocol using polynomial functions over E p defined by polynomials in \({\mathbb{Z}[X]}\). In this note, we show that this protocol is insecure; it can be broken by solving a set of 10 consistent homogeneous linear equations in 8 unknowns over \({\mathbb{Z}_{p^2}}\).

Keywords

Cryptanalysis Key exchange protocol Endomorphism Noncommutative ring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Climent J.J., Navarro P.R., Tortosa L.: On the arithmetic of the endomorphisms ring \({End(\mathbb{Z}_p \times Z_p^2)}\). Appl. Algebra Eng. Commun. Comput. 22, 91–108 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bergman G.M.: Examples in PI ring theory. Israel J. Math. 18, 257–277 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Myasnikov A., Shpilrain V., Ushakov A.: Non-Commutative Cryptography and Complexity of Group-Theoretic Problems in Mathematical, Surveys and Monographs. Vol. 177, American Mathematical Society, Providence (2011)Google Scholar
  4. 4.
    Tsaban, B.: Combinatorial Group Theory and Cryptography Bulletin (CGC Bulletin). http://u.cs.biu.ac.il/~tsaban/CGC/cgc.html
  5. 5.
    Stickel, E.: A new method for exchanging secret keys. In: Proceedings of the thrid International Conference on Information Technology and Applications (ICITA’05), pp. 426–430. Sidney (2005)Google Scholar
  6. 6.
    Shpilrain, V.: Cryptanalysis of Stickel’s key exchange scheme. In: Computer Science in Russia-CSR’08, Lecture Notes in Computer Science, vol. 5010, pp. 283–288. Springer, Berlin (2008)Google Scholar
  7. 7.
    Sramka M.: On the security of Stickel’s key exchange scheme. Comb. Math. Comb. Comput. 66, 151–159 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Mullan C.: Cryptanalysing variants of Stickel’s key agreement protocol. Math. Crypt. 4(4), 365–373 (2011)MathSciNetGoogle Scholar
  9. 9.
    Mullan, C.: Some Results in Group-Based Cryptography, Thesis submitted to the University of London for the Degree of Doctor of Philosophy (2011)Google Scholar
  10. 10.
    Cha, J.C., Ko, K.H., Lee, S., Han, J.W., Cheon, J.H.: An efficient implementation of braid groups. In: Advances in Cryptology-ASIACRYPT’01, Lecture Notes in Computer Science, vol. 2248, pp. 144–156. Springer, Berlin (2001)Google Scholar
  11. 11.
    Ko K.H., Lee S., Cheon J.H., Han J.W., Kang J.S., Park C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) Advances in Cryptology-CRYPTO’00, Lecture Notes in Computer Science, vol. 1880, pp. 166–183. Springer, Berlin (2000)Google Scholar
  12. 12.
    Hughes, J.: A linear algebraic attack on the AAFG1 braid group cryptosystem. In: Australian Conference on Information Security and Privacy-ACISP’02, Lecture Notes in Computer Science, vol. 2384, pp. 176–189. Springer, Berlin (2002)Google Scholar
  13. 13.
    Cheon, J.H., Jun, B.: A Polynomial Time Algorithm for the Braid Diffie-Hellman Conjugacy Problem. In: Advances in Cryptology-CRYPTO’03, Lecture Notes in Computer Science, vol. 2729, pp. 212–225. Springer, Berlin (2003)Google Scholar
  14. 14.
    Lee, E., Park, J.H.: Cryptanalysis of the public-key encryption based on braid groups. In: Advances in cryptology-EUROCRYPT’03, Lecture Notes in Computer Science, vol. 2656, pp. 477–490. Springer, Berlin (2003)Google Scholar
  15. 15.
    Kalka A.G.: Representation attacks on the braid Diffie-Hellman public key encryption. Appl. Algebra Eng. Commun. Comput. 17, 257–266 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering (ECE)Concordia UniversityMontrealCanada
  2. 2.Concordia Institute for Information Systems Engineering(CIISE)Concordia UniversityMontrealCanada

Personalised recommendations