Effective homotopy of fibrations

Original Paper

Abstract

The well-known effective homology method provides algorithms computing homology groups of spaces. The main idea consists in keeping systematically a deep and subtle connection between the homology of any object and the object itself. Now applying similar ideas to the computation of homotopy groups, we aim to develop a new effective homotopy theory which allows one to determine homotopy groups of spaces. In this work we introduce the notion of a solution for the homotopical problem of a simplicial set, which will be the main definition of our theory, and present an algorithm computing the effective homotopy of a fibration. We also illustrate with examples some applications of our results.

Keywords

Constructive algebraic topology Homotopy groups Fibrations Spectral sequences 

Mathematics Subject Classification

55Q05 18G30 55T99 68W30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams J.F.: On the non-existence of elements of Hopf invariant one. Ann. Math. 72(1), 20–104 (1960)MATHCrossRefGoogle Scholar
  2. 2.
    Bousfield A.K., Kan D.M.: Homotopy Limits, Completions and Localizations. Lecture Notes in Mathematics vol. 304. Springer (1972)Google Scholar
  3. 3.
    Bousfield A.K., Kan D.M.: The homotopy spectral sequence of a space with coefficients in a ring. Topology 11, 79–106 (1972)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brown E.H.: Finite computability of Postnikov complexes. Ann. Math. 65(1), 1–20 (1957)MATHCrossRefGoogle Scholar
  5. 5.
    Ellis G.J.: Homology of 2-types. J. Lond. Math. Soc. 46(2), 1–27 (1992)MATHCrossRefGoogle Scholar
  6. 6.
    Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The Kenzo program. Institut Fourier, Grenoble (1999) http://www-fourier.ujf-grenoble.fr/~ergerar/Kenzo/
  7. 7.
    May J.P.: Simplicial Objects in Algebraic Topology. Van Nostrand Mathematical Studies, Priceton (1967)Google Scholar
  8. 8.
    McCleary J.: User’s Guide to Spectral Sequences. Publish or Perish, Wilmington (1985)MATHGoogle Scholar
  9. 9.
    Romero A.: Computing the first stages of the Bousfield–Kan spectral sequence. Appl. Algebra Eng. Commun. Comput. 21(3), 227–248 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Romero, A., Sergeraert, F.: Effective homotopy in a Kan fibration. Preprint (2010). http://www.unirioja.es/cu/anromero/effective-homotopy.pdf
  11. 11.
    Romero, A., Sergeraert, F.: Discrete Vector Fields and Fundamental Algebraic Topology. Preprint (2010). http://arxiv.org/abs/1005.5685v1
  12. 12.
    Rubio J., Sergeraert F.: Constructive algebraic topology. Bulletin des Sciences Mathématiques 126(5), 389–412 (2002)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Rubio, J., Sergeraert, F.: Constructive Homological Algebra and Applications, Lecture Notes Summer School on Mathematics, Algorithms, and Proofs. University of Genova (2006). http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Genova-Lecture-Notes.pdf
  14. 14.
    Sergeraert F.: The computability problem in algebraic topology. Adv. Math. 104(1), 1–29 (1994)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Sergeraert, F.: Effective Exact Couples. Preprint (2009) http://www-fourier.ujf-grenoble.fr/~sergerar/Papers/Exact-Couples-2-2.pdf
  16. 16.
    Serre J.P.: Groupes d’homotopie et classes de groupes abéliens. Ann. Math. 58(2), 258–294 (1953)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departamento de Matemáticas y ComputaciónUniversidad de La RiojaLogroñoSpain
  2. 2.Institut FourierUniversité Joseph FourierGrenobleFrance

Personalised recommendations