On the distribution of the elements of a finite group generated by covers

  • Nicola Pace
Original Paper


Let G be a finite group and let A be a finite sequence of subsets of G. We consider covers for the group G of the type A k , where A k is the concatenation of k copies of A. We show that the distribution of the elements of G generated by A k approaches the uniform distribution as k → ∞ (in the -norm). If G = PSL(2, p) and \({{\bf A}=( \langle \alpha \rangle, \langle \beta \rangle )}\) , where α and β are two non-commuting generators of order p, we provide the exact distribution of the elements generated by A k .


Cover Non-abelian group Linear group Uniformity 

Mathematics Subject Classification (2000)

05E15 60B15 94A60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diaconis P.: Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward, CA (1988)zbMATHGoogle Scholar
  2. 2.
    Klingler L.C., Magliveras S.S., Richman F., Sramka M.: Discrete logarithms for finite groups. Computing 85, 3–19 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Lempken W., Magliveras S.S., van Trung T., Wei W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Magliveras S.S., Stinson D.R., van Trung T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15(4), 285–297 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations