Advertisement

On the distribution of the elements of a finite group generated by covers

  • Nicola Pace
Original Paper
  • 68 Downloads

Abstract

Let G be a finite group and let A be a finite sequence of subsets of G. We consider covers for the group G of the type A k , where A k is the concatenation of k copies of A. We show that the distribution of the elements of G generated by A k approaches the uniform distribution as k → ∞ (in the -norm). If G = PSL(2, p) and \({{\bf A}=( \langle \alpha \rangle, \langle \beta \rangle )}\) , where α and β are two non-commuting generators of order p, we provide the exact distribution of the elements generated by A k .

Keywords

Cover Non-abelian group Linear group Uniformity 

Mathematics Subject Classification (2000)

05E15 60B15 94A60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diaconis P.: Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward, CA (1988)zbMATHGoogle Scholar
  2. 2.
    Klingler L.C., Magliveras S.S., Richman F., Sramka M.: Discrete logarithms for finite groups. Computing 85, 3–19 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Lempken W., Magliveras S.S., van Trung T., Wei W.: A public key cryptosystem based on non-abelian finite groups. J. Cryptol. 22, 62–74 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Magliveras S.S., Stinson D.R., van Trung T.: New approaches to designing public key cryptosystems using one-way functions and trapdoors in finite groups. J. Cryptol. 15(4), 285–297 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonUSA

Personalised recommendations