Envelope computation in the plane by approximate implicitization

Original Paper

Abstract

Given a rational family of planar rational curves in a certain region of interest, we are interested in computing an implicit representation of the envelope. The points of the envelope correspond to the zero set of a function (which represents the envelope condition) in the parameter space combining the curve parameter and the motion parameter. We analyze the connection of this function to the implicit equation of the envelope. This connection enables us to use approximate implicitization for computing the (exact or approximate) implicit representation of the envelope. Based on these results, we formulate an algorithm for computing a piecewise algebraic approximation of low degree and illustrate its performance by several examples.

Keywords

Approximate implicitization Envelope Algebraic curve 

Mathematics Subject Classification (2000)

65D17 14Q20 41A15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Malek K., Yang J., Blackmore D., Joy K.: Swept volumes: fundation, perspectives, and applications. Int. J. Shape Modeling 12(1), 87–127 (2006)MATHCrossRefGoogle Scholar
  2. 2.
    Alcazar J.: Good global behavior of offsets to plane algebraic curves. J. Symb. Comput. 43(9), 659–680 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alcazar J., Schicho J., Sendra J.: A delineability-based method for computing critical sets of algebraic surfaces. J. Symb. Comput. 42(6), 678–691 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Alcazar J., Sendra J.: Local shape of offsets to algebraic curves. J. Symb. Comput. 42(3), 338–351 (2007)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Arnold V., Gusein-Zade S., Varchenko A.: Singularities of Differentiable Maps. Springer, Berlin (1985)MATHCrossRefGoogle Scholar
  6. 6.
    Bajaj, C.: The emergence of algebraic curves and surfaces in geometric design. In: Directions in Geometric Computing. pp. 1–28 (1993)Google Scholar
  7. 7.
    Bottema O., Roth B.: Theoretical Kinematics. Dover Publications, New York (1990)MATHGoogle Scholar
  8. 8.
    Dokken, T.: Approximate implicitization. In: Mathematical Methods for Curves and Surfaces, Oslo 2000, pp. 81–102 (2001)Google Scholar
  9. 9.
    Dokken, T., Kellermann, H., Tegnander, C.: An approach to weak approximation implicitization. In: Mathematical Methods for Curves and Surfaces, Oslo 2000, pp. 103–112 (2001)Google Scholar
  10. 10.
    Dokken, T., Thomassen, J.: Overview of approximate implicitization. In: Topics in Algebraic Geometry and Geometric Modeling: Workshop on Algebraic Geometry and Geometric Modeling, July 29–August 2, 2002, Vilnius University, Lithuania, vol. 334, pp. 169–184. American Mathematical Society (2003)Google Scholar
  11. 11.
    Dokken, T., Thomassen, J.: Weak approximate implicitization. In: IEEE International Conference on Shape Modeling and Applications, pp. 204–214. SMI 2006 (2006)Google Scholar
  12. 12.
    Elkadi M., Mourrain B.: Residue and implicitization problem for rational surfaces. Appl. Algebra Eng. Commun. Comput. 14(5), 361–379 (2004)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Farouki R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin (2008)MATHCrossRefGoogle Scholar
  14. 14.
    Flaquer J., Garate G., Pargada M.: Envelopes of moving quadric surfaces. Comput. Aided Geom. Des. 9(4), 299–312 (1992)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Galligo, A., van Hoeij, M.: Approximate bivariate factorization: a geometric viewpoint. In: Proceedings of International Workshop on Symbolic-Numeric Computation, pp. 1–10. ACM (2007)Google Scholar
  16. 16.
    Golub G., Van Loan C.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  17. 17.
    Hoffmann C.: Implicit curves and surfaces in cagd. IEEE Comput. Graph. Appl. 13(1), 79–88 (1993)CrossRefGoogle Scholar
  18. 18.
    Kim Y., Varadhan G., Lin M., Manocha D.: Fast swept volume approximation of complex polyhedral models. Comput. Aided Des. 36(11), 1013–1027 (2004)CrossRefGoogle Scholar
  19. 19.
    Kreyszig E.: Differential Geometry. Dover, New York (1991)Google Scholar
  20. 20.
    Patrikalakis N., Maekawa T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Berlin (2002)MATHGoogle Scholar
  21. 21.
    Peternell M., Pottmann H., Steiner T., Zhao H.: Swept volumes. Comput. Aided Des. Appl. 2, 599–608 (2005)Google Scholar
  22. 22.
    Pottmann, H., Peternell, M.: Envelopes-computational theory and applications. In: Spring Conference on Computer Graphics, pp. 3–23. Comenius University, Bratislava (2000)Google Scholar
  23. 23.
    Rabl M., Jüttler B., Gonzalez-Vega L.: Exact envelope computation for moving surfaces with quadratic support functions. In: Mourrain, B., Lenarcic, W. (eds) Advances in Robot Kinematics: Analysis and Design, pp. 283–290. Springer, Berlin (2008)CrossRefGoogle Scholar
  24. 24.
    San Segundo F., Sendra J.: Partial degree formulae for plane offset curves. J. Symb. Comput. 44(6), 635–654 (2009)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Sederberg T.: Planar piecewise algebraic curves. Comput. Aided Geom. Des. 1(3), 241–255 (1984)MATHCrossRefGoogle Scholar
  26. 26.
    Sederberg T., Zheng J., Klimaszewski K., Dokken T.: Approximate implicitization using monoid curves and surfaces. Graph. Models Image Process. 61(4), 177–198 (1999)CrossRefGoogle Scholar
  27. 27.
    Sendra J., Winkler F., Perez-Diaz S.: Rational Algebraic Curves. Springer, Berlin (2007)Google Scholar
  28. 28.
    Shalaby M., Thomassen J., Wurm E., Dokken T., Jüttler B.: Piecewise approximate implicitization: experiments using industrial data. In: Mourrain, B., Elkadi, M., Piene, R. (eds) Algebraic Geometry and Geometric Modeling, pp. 37–52. Springer, Berlin (2006)CrossRefGoogle Scholar
  29. 29.
    Shanks, D.: Solved and unsolved problems in number theory. AMS Chelsea Pub, KKK (1993)Google Scholar
  30. 30.
    Van Hoeij, M.: An algorithm for computing the Weierstrass normal form. In: Proceedings of International Symposium Symbolic and Algebraic Computation, pp. 90–95. ACM (1995)Google Scholar
  31. 31.
    Wurm E., Thomassen J., Jüttler B., Dokken T.: Comparative benchmarking of methods for approximate implicitization. In: Neamtu, M., Lucian, M. (eds) Geometric Modeling and Computing: Seattle 2003, pp. 537–548. Nashboro Press, Brentwood (2004)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Applied GeometryJohannes Kepler University of LinzLinzAustria

Personalised recommendations