Complexity bounds for the rational Newton-Puiseux algorithm over finite fields

Original Paper


We carefully study the number of arithmetic operations required to compute rational Puiseux expansions of a bivariate polynomial F over a finite field. Our approach is based on the rational Newton-Puiseux algorithm introduced by D. Duval. In particular, we prove that coefficients of F may be significantly truncated and that certain complexity upper bounds may be expressed in terms of the output size. These preliminary results lead to a more efficient version of the algorithm with a complexity upper bound that improves previously published results. We also deduce consequences for the complexity of the computation of the genus of an algebraic curve defined over a finite field or an algebraic number field. Our results are practical since they are based on well established subalgorithms, such as fast multiplication of univariate polynomials with coefficients in a finite field.


Puiseux series Complexity Algebraic functions Genus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bini D., Pan V.Y.: Polynomial and Matrix Computations, Progress in Theoretical Computer Science. Vol. 1. Birkhäuser, Saarbrücken (1994)Google Scholar
  2. 2.
    Bliss, G.A.: Algebraic functions. AMS (1933)Google Scholar
  3. 3.
    Bosma W., Cannon J., Playoust C.: The Magma algebra system I : the user language. J. Symb. Comput. 24(3–4), 235–265 (1997)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bostan, A., Chyzak, F., Lecerf, G., Salvy, B., Schost, E.: Differential equations for algebraic functions. In: Brown, C.W. (ed.) ISSAC’07: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, pp. 25–32. ACM Press (2007). doi:10.1145/1277548.1277553
  5. 5.
    Brent R.P., Kung H.T.: Fast algorithms for manipulating formal power series. J. ACM. 25(4), 581–595 (1978). doi:10.1145/322092.322099 MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Brieskorn, E., Knörrer, H.: Plane Algebraic Curves. Birkhaüser (1986)Google Scholar
  7. 7.
    Cantor D., Kaltofen E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28(7), 693–701 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chevalley, C.: Introduction to the Theory of Algebraic Functions of One Variable, Mathematical Surveys, vol. 6. AMS (1951)Google Scholar
  9. 9.
    Chistov, A.L.: Polynomial complexity of the Newton-Puiseux algorithm. In: Mathematical Foundations of Computer Science 1986, pp. 247–255. Springer, London, UK (1986)Google Scholar
  10. 10.
    Chudnovsky D.V., Chudnovsky G.V.: On expansion of algebraic functions in power and Puiseux series I. J. Complex. 2(4), 271–294 (1986)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Chudnovsky D.V., Chudnovsky G.V.: On expansion of algebraic functions in power and Puiseux series II. J. Complex. 3(1), 1–25 (1987)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Cohn P.M.: Puiseux’s theorem revisited. J. Pure Appl. Algebra 24, 1–4 (1984)CrossRefGoogle Scholar
  13. 13.
    Comtet L.: Calcul pratique des coefficients de Taylor d’une fonction algébrique. L’Enseignement Mathématique 2(10), 267–270 (1964)MathSciNetGoogle Scholar
  14. 14.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: STOC ’87: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 1–6. ACM, New York, NY, USA (1987). doi:10.1145/28395.28396
  15. 15.
    Cormier O., Singer M.F., Trager B.M., Ulmer F.: Linear differential operators for polynomial equations. J. Symbol. Comput. 34(5), 355–398 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Dahan X., Schost E., Maza M.M., Wu W., Xie Y.: On the complexity of the D5 principle. SIGSAM Bull. 39(3), 97–98 (2005). doi:10.1145/1113439.1113457 CrossRefGoogle Scholar
  17. 17.
    Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: EUROCAL 85. Springer-Verlag LNCS 204 (1985)Google Scholar
  18. 18.
    Diaz-Toca G., Gonzalez-Vega L.: Determining Puiseux expansions by Hensel’s lemma and dynamic evaluation. In: Ganzha, V., Mayr, E., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing, CASC 2002, Technische Universität München, Germany (2002)Google Scholar
  19. 19.
    Duval, D.: Diverses questions relatives au calcul formel avec des nombres algébriques. Université de Grenoble, Thèse d’État (1987)Google Scholar
  20. 20.
    Duval D.: Rational Puiseux expansions. Compos. Math 70(2), 119–154 (1989)MathSciNetMATHGoogle Scholar
  21. 21.
    Eichler M.: Introduction to the Theory of Algebraic Numbers and Functions. Academic Press, London (1966)MATHGoogle Scholar
  22. 22.
    Henry, J.P., Merle, M.: Complexity of computation of embedded resolution of algebraic curves. In: Proceedings Eurocal 87, no. 378 in Lecture Notes in Computer Science, pp. 381–390. Springer (1987)Google Scholar
  23. 23.
    Kaltofen, E.: Polynomial factorization: a success story. In: ISSAC ’03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 3–4. ACM, New York, NY, USA (2003). doi:10.1145/860854.860857
  24. 24.
    Kedlaya, K., Umans, C.: Fast modular composition in any characteristic. In: FOCS, pp. 146–155. IEEE Computer Society (2008)Google Scholar
  25. 25.
    Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. In: STOC, pp. 481–490 (2008)Google Scholar
  26. 26.
    Kung H.T., Traub J.F.: All algebraic functions can be computed fast. J. ACM 25(2), 245–260 (1978)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Lang S.: Algebra. Addison-Wesley, Reading (1965)MATHGoogle Scholar
  28. 28.
    Lecerf, G.: Fast separable factorization and applications. Appl. Algebra Eng. Commun. Comput. 19(2), (2008)Google Scholar
  29. 29.
    Li, X., Maza, M.M., Schost, E.: Fast arithmetic for triangular sets: from theory to practice. In: ISSAC ’07: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, pp. 269–276. ACM, New York, NY, USA (2007) doi:10.1145/1277548.1277585
  30. 30.
    Monagan M.B., Geddes K.O., Heal K.M., Labahn G., Vorkoetter S.M., McCarron J., DeMarco P.: Maple 10 Programming Guide. Maplesoft, Waterloo (2005)Google Scholar
  31. 31.
    Poteaux, A.: Computing monodromy groups defined by plane algebraic curves. In: Proceedings of the 2007 International Workshop on Symbolic-Numeric Computation, pp. 36–45. ACM, New-York (2007)Google Scholar
  32. 32.
    Poteaux, A.: Calcul de développements de Puiseux et application au calcul de groupe de monodromie d’une courbe algébrique Plane. Ph.D. thesis, Université de Limoges (2008)Google Scholar
  33. 33.
    Poteaux, A., Rybowicz, M.: Good reduction of Puiseux series and complexity of the Newton-Puiseux algorithm. In: ISSAC ’08: Proceedings of the 2008 International Symposium on Symbolic and Algebraic Computation, pp. 239–246. ACM, New-York (2008)Google Scholar
  34. 34.
    Poteaux, A., Rybowicz, M.: Towards a Symbolic-Numeric Method to Compute Puiseux Series: The Modular Part. (2008)
  35. 35.
    Poteaux, A., Rybowicz, M.: Good reduction of Puiseux series and applications. J. Symbol. Comput. (To appear, 2011)Google Scholar
  36. 36.
    Poteaux, A., Schost, E.: Modular composition modulo triangular sets and applications. Comput. Complex. (Submitted, 2010)Google Scholar
  37. 37.
    Reischert, D.: Asymptotically fast computations of subresultants. In: ISSAC ’97: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pp. 233–240. ACM, ACM Press (1997)Google Scholar
  38. 38.
    Sasaki T., Inaba D.: Hensel construction of \({f(x,u_1,\dots,u_l)}\) at a singular point and its application. Sigsam Bull. 1, 9–17 (2000)CrossRefGoogle Scholar
  39. 39.
    Schönage A., Strassen V.: Schnelle multiplikation großer zahlen. Comput. 7, 281–292 (1971)CrossRefGoogle Scholar
  40. 40.
    Shoup V.: Fast construction of irreducible polynomials over finite fields. J. Symbol. Comput. 17, 371–391 (1993)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Shoup, V.: Efficient computation of minimal polynomials in algebraic extensions of finite fields. In: ISSAC ’99: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, pp. 53–58. ACM, New York, NY, USA (1999) doi:10.1145/309831.309859
  42. 42.
    Teitelbaum J.: The computational complexity of the resolution of plane curve singularities. Math. Comp. 54(190), 797–837 (1990)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    van der Hoeven J.: Fast evaluation of holonomic functions. Theor. Comput. Sci. 210(1), 199–215 (1999)MATHCrossRefGoogle Scholar
  44. 44.
    van der Hoeven J.: Effective analytic functions. J. Symbol. Comput. 39(3–4), 433–449 (2005)MATHGoogle Scholar
  45. 45.
    van Hoeij M.: An algorithm for computing an integral basis in an algebraic function field. J. Symbol. Comput. 18, 353–363 (1994)MATHCrossRefGoogle Scholar
  46. 46.
    von zur Gathen J., Gerhard J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  47. 47.
    Von Zur Gathen J., Panario D.: Factoring polynomials over finite fields: a survey. J. Symbo. Comput. 31(1–2), 3–17 (2001). doi:10.1006/jsco.1999.1002 MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Walker R.J.: Algebraic Curves. Springer, Berlin (1978)MATHGoogle Scholar
  49. 49.
    Walsh P.G.: On the complexity of rational Puiseux expansions. Pac. J. Math. 188, 369–387 (1999)MATHCrossRefGoogle Scholar
  50. 50.
    Walsh P.G.: A polynomial-time complexity bound for the computation of the singular part of an algebraic function. Math. Comput. 69, 1167–1182 (2000)MATHCrossRefGoogle Scholar
  51. 51.
    Yun, D.D.Y.: On square-free decomposition algorithms. In: Proceedings SYMSAC ’76. ACM (1976)Google Scholar
  52. 52.
    Zariski O.: Le problème des modules pour les branches planes. Hermann, Paris (1981)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.SALSA Project, INRIA, Paris-Rocquencourt Center, LIP6, UMR 7606, Université Pierre et Marie Curie/CNRSParisFrance
  2. 2.XLIM, UMR 6172, Université de Limoges/CNRSLimogesFrance

Personalised recommendations