On necessary and sufficient conditions for differential flatness

Original Paper

Abstract

This paper is devoted to the characterization of differentially flat nonlinear systems in implicit representation, after elimination of the input variables, in the differential geometric framework of manifolds of jets of infinite order. We extend the notion of Lie-Bäcklund equivalence, introduced in Fliess et al. (IEEE Trans Automat Contr 44(5):922–937, 1999), to this implicit context and focus attention on Lie-Bäcklund isomorphisms associated to flat systems, called trivializations. They can be locally characterized in terms of polynomial matrices of the indeterminate \({\frac{d}{dt}}\) , whose range is equal to the kernel of the polynomial matrix associated to the implicit variational system. Such polynomial matrices are useful to compute the ideal of differential forms generated by the differentials of all possible trivializations. We introduce the notion of a strongly closed ideal of differential forms, and prove that flatness is equivalent to the strong closedness of the latter ideal, which, in turn, is equivalent to the existence of solutions of the so-called generalized moving frame structure equations. Two sequential procedures to effectively compute flat outputs are deduced and various examples and consequences are presented.

Keywords

Nonlinear system Implicit system Manifold of jets of infinite order Hilbert’s 22nd problem Polynomial matrices Ideals Differential forms Moving frame Differential flatness Flat output 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson R.L., Ibragimov N.H. (1979) Lie-Bäcklund Transformations in Applications. SIAM, PhiladelphiaMATHGoogle Scholar
  2. 2.
    Antritter, F., Lévine, J.: Towards a computer algebraic algorithm for flat output determination. In: Proceedings of ISSAC’08, Hagenberg, Austria (2008)Google Scholar
  3. 3.
    Aranda-Bricaire E., Moog C.H., Pomet J.-B. (1995) A linear algebraic framework for dynamic feedback linearization. IEEE Trans. Automat. Contr. 40(1): 127–132MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Avanessoff D., Pomet J.-B. (2007) Flatness and monge parameterization of two-input systems, control-affine with 4 states or general with 3 states. ESAIM. Contrôle, optimisation et calcul des variations 13(2): 237–264MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bers, L.: On Hilbert’s 22nd problem. In: Browder, F. (ed.) Mathematical Developments Arising From Hilbert Problems, Proceedings of Symposia in Pure Mathematics, pp. 559–609. American Mathematical Society, Providence, Rhode Island (1976)Google Scholar
  6. 6.
    Bryant R.L., Chern S.S., Gardner R.B., Goldschmitt H.L., Griffiths P.A. (1991) Exterior Differential Systems, vol. 18 of Mathematical Sciences Research Institute Publications. Springer, BerlinGoogle Scholar
  7. 7.
    Cartan, É.: Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur certaines familles de courbes. Bull. Soc. Math. Fr. 42, 12–48 (1914). In Oeuvres Complètes, part II, vol 2, pp. 1133–1168, CNRS, Paris, 1984Google Scholar
  8. 8.
    Charlet B., Lévine J., Marino R. (1989) On dynamic feedback linearization. Syst. Control Lett. 13: 143–151MATHCrossRefGoogle Scholar
  9. 9.
    Charlet B., Lévine J., Marino R. (1991) Sufficient conditions for dynamic state feedback linearization. SIAM J. Control Optim. 29(1): 38–57MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chern S.S., Chen W.H., Lam K.S. (2000) Lectures on Differential Geometry, vol. 1 of Series on University Mathematics. World Scientific, SingaporeGoogle Scholar
  11. 11.
    Chetverikov, V.N.: New flatness conditions for control systems. In: Proceedings of NOLCOS’01, St. Petersburg, pp. 168–173 (2001)Google Scholar
  12. 12.
    Chetverikov, V.N.: Flatness conditions for control systems. Preprint DIPS (2002). Available via internet. http://www.diffiety.ac.ru
  13. 13.
    Chyzak F., Quadrat A., Robertz D. (2005) Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Eng. Commun. Comput. 16(5): 319–376MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Cohn P.M. (1985) Free Rings and Their Relations. Academic Press, LondonMATHGoogle Scholar
  15. 15.
    Fliess M. (1990) Some basic structural properties of generalized linear systems. Syst. Control Lett. 15: 391–396MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fliess M. (1992) A remark on Willems’ trajectory characterization of linear controllability. Syst. Control Lett. 19: 43–45MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fliess M., Lévine J., Martin P.H., Ollivier F., Rouchon P. (1997) Controlling nonlinear systems by flatness. In: Byrnes C.I., Datta B.N., Gilliam D.S., Martin C.F. (eds) Systems and Control in the Twenty-First Century. Birkhäuser, Boston, pp 137–154Google Scholar
  18. 18.
    Fliess M., Lévine J., Martin P.H., Rouchon P. (1992) Sur les systèmes non linéaires différentiellement plats. C. R. Acad. Sci. Paris I–315: 619–624Google Scholar
  19. 19.
    Fliess M., Lévine J., Martin P.H., Rouchon P. (1995) Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control 61(6): 1327–1361MATHCrossRefGoogle Scholar
  20. 20.
    Fliess M., Lévine J., Martin P.H., Rouchon P. (1999) A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Contr. 44(5): 922–937MATHCrossRefGoogle Scholar
  21. 21.
    Franch, J.: Flatness, Tangent Systems and Flat Outputs. PhD thesis, Universitat Politècnica de Catalunya Jordi Girona (1999)Google Scholar
  22. 22.
    Goursat E. (1905) Sur le problème de Monge. Bull. Soc. Math. t. 33: 201–210MATHMathSciNetGoogle Scholar
  23. 23.
    Hadamard J. (1901) Sur l’équilibre de plaques élastiques circulaires libres ou appuyées et celui de la sphère isotrope. Ann. Éc. Norm. Sér. 3, t. 18: 313–342MathSciNetGoogle Scholar
  24. 24.
    Hilbert, D.: Mathematische probleme. Archiv für Mathematik und Physik 1, 44–63 and 213–237 (1901). Also in Gesammelte Abhandlungen, vol. 3, pp. 290–329, Chelsea, New York (1965)Google Scholar
  25. 25.
    Hilbert, D.: Über den Begriff der Klasse von Differentialgleichungen. Math. Ann. 73, 95–108 (1912). Also in Gesammelte Abhandlungen, vol. 3, pp. 81–93, Chelsea, New York (1965)Google Scholar
  26. 26.
    Hunt L.R., Su R., Meyer G. (1983) Design for multi-input nonlinear systems. In: Brockett R.W., Millman R.S., Sussmann H.J. (eds) Differential Geometric Control Theory. Birkhäuser, Boston, pp 268–298Google Scholar
  27. 27.
    Jakubczyk, B.: Invariants of dynamic feedback and free systems. In: Proceedings of the ECC’93, Groningen, pp. 1510–1513 (1993)Google Scholar
  28. 28.
    Jakubczyk B., Respondek W. (1980) On linearization of control systems. Bull. Acad. Pol. Sci. Ser. Sci. Math. 28(9–10): 517–522MATHMathSciNetGoogle Scholar
  29. 29.
    Kondratieva, M.V., Mikhalev, A.V., Pankratiev, E.V.: On Jacobi’s bound for systems of differential polynomials, pp. 79–85. Algebra, Moscow University Press, Moscow (1982, in russian)Google Scholar
  30. 30.
    Kostrikin A.I., Shafarevich I.R., Shafarevich I.R. (1980) Algebra, I., vol. 11 of Encyclopaedia of Mathematical Sciences. Springer, New YorkGoogle Scholar
  31. 31.
    Krasil’shchik I.S., Lychagin V.V., Vinogradov A.M. (1986) Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach, New YorkMATHGoogle Scholar
  32. 32.
    Lévine, J.: On necessary and sufficient conditions for differential flatness. In: Proceedings of IFAC NOLCOS 2004 Conference, Stuttgart (2004)Google Scholar
  33. 33.
    Lévine, J.: On necessary and sufficient conditions for differential flatness. http://www.arxiv.org, arXiv:math.OC/0605405 (2006)
  34. 34.
    Lévine J. (2009) Analysis and Control of Nonlinear Systems: A Flatness-based Approach. Mathematical Engineering. Springer, BerlinGoogle Scholar
  35. 35.
    Lévine J., Nguyen D.V. (2003) Flat output characterization for linear systems using polynomial matrices. Syst. Control Lett. 48: 69–75MATHCrossRefGoogle Scholar
  36. 36.
    Martin, P.H.: Contribution à l’Étude des Systèmes Diffèrentiellement Plats. PhD thesis, École des Mines de Paris (1992)Google Scholar
  37. 37.
    Martin, P.H., Murray, R.M., Rouchon, P.: Flat systems. In: Bastin, G., Gevers, M. (eds.) Plenary Lectures and Minicourses, Proceedings of the ECC 97, Brussels, pp. 211–264 (1997)Google Scholar
  38. 38.
    Martin, P.H., Rouchon, P.: Systems without drift and flatness. In: Proceedings MTNS 93, Regensburg, Germany, August (1993)Google Scholar
  39. 39.
    Monge, G.: Supplément où l’on fait savoir que les équations aux différences ordinaires, pour lesquelles les conditions d’intégrabilité ne sont pas satisfaites sont susceptibles d’une véritable intégration et que c’est de cette intégration que dépend celle des équations aux différences partielles élevées. Mémoires de l’Académie Royale des Sciences, pp. 502–576 (1787)Google Scholar
  40. 40.
    Ollivier, F.: Standard bases of differential ideals. In: Proceedings of AAECC8, vol. 508 of Lecture Notes In Computer Science, pp. 304–321. Springer, Berlin (1990)Google Scholar
  41. 41.
    Ollivier F., Brahim S. (2007) La borne de Jacobi pour une diffiété définie par un système quasi régulier (Jacobi’s bound for a diffiety defined by a quasi-regular system). C. R. Math. 345(3): 139–144MATHMathSciNetGoogle Scholar
  42. 42.
    Pereira da Silva, P.S.: Flatness of nonlinear control systems: a Cartan-Kähler approach. In: Proceedings of the Mathematical Theory of Networks and Systems (MTNS’2000), Perpignan, pp. 1–10 (2000)Google Scholar
  43. 43.
    Pereira da Silva P.S., Corrêa Filho C. (2001) Relative flatness and flatness of implicit systems. SIAM J. Control Optim. 39(6): 1929–1951MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Poincaré, H.: Sur l’uniformisation des fonctions analytiques. Acta Mathematica 31, 1–63 (1907). Also in Œuvres de Henri Poincaré, t. 4, pp. 70–139, Gauthier-Villars, Paris (1950)Google Scholar
  45. 45.
    Polderman J.W., Willems J.C. (1998) Introduction to Mathematical System Theory: A Behavioral Approach. Texts in Applied Mathematics, vol. 26. Springer, New YorkGoogle Scholar
  46. 46.
    Pomet J.-B. (1993) A differential geometric setting for dynamic equivalence and dynamic linearization. In: Jakubczyk B., Respondek W., Rzeżuchowski T. (eds) Geometry in Nonlinear Control and Differential Inclusions. Banach Center Publications, Warsaw, pp 319–339Google Scholar
  47. 47.
    Pomet, J.-B.: On dynamic feedback linearization of four-dimensional affine control systems with two inputs. ESAIM-COCV (1997). http://www.emath.fr/Maths/Cocv/Articles/articleEng.html
  48. 48.
    Pommaret J.F. (2001) Partial Differential Control Theory. Kluwer Academic Publishers, DordrechtMATHGoogle Scholar
  49. 49.
    Pommaret J.F., Quadrat A. (1999) Localization and parametrization of linear multidimensional control systems. Syst. Control Lett. 37: 247–269MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Rathinam M., Murray R.M. (1998) Configuration flatness of Lagrangian systems underactuated by one control. SIAM J. Control Optim. 36(1): 164–179MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Ritt J.F. (1935) Jacobi’s problem on the order of a system of differential equations. Ann. Math. 36: 303–312CrossRefMathSciNetGoogle Scholar
  52. 52.
    Rouchon P. (1994) Necessary condition and genericity of dynamic feedback linearization. J. Math. Syst. Estim. Control 4(2): 257–260MATHMathSciNetGoogle Scholar
  53. 53.
    Rouchon, P., Fliess, M., Lévine, J., Martin, P.H.: Flatness and motion planning: the car with n-trailers. In: Proceedings of the ECC’93, Groningen, pp. 1518–1522 (1993)Google Scholar
  54. 54.
    Rouchon, P., Fliess, M., Lévine, J., Martin, P.H.: Flatness, motion planning and trailer systems. In: Proceedings of the IEEE Conference Decision and Control, San Antonio (1993)Google Scholar
  55. 55.
    Rudolph J. (2003) Flatness Based Control of Distributed Parameter Systems. Shaker Verlag, AachenGoogle Scholar
  56. 56.
    Rudolph J., Winkler J., Woittenek F. (2003) Flatness Based Control of Distributed Parameter Systems: Examples and Computer Exercises from Various Technological Domains. Shaker Verlag, AachenGoogle Scholar
  57. 57.
    Schlacher, K., Schöberl, M.: Construction of flat outputs by reduction and elimination. In: Proceedings of the 7th IFAC Symposium on Nonlinear Control Systems, Pretoria, South Africa, pp. 666–671 (2007)Google Scholar
  58. 58.
    Serret, J.-A.: Sur l’intégration de l’équation dx 2dy 2dz 2ds 2. J. Math. pure et appl. 1ère série, t. 13, 353–368 (1848)Google Scholar
  59. 59.
    Shadwick W.F. (1990) Absolute equivalence and dynamic feedback linearization. Syst. Control Lett. 15: 35–39MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Sira-Ramirez H., Agrawal S. (2004) Differentially Flat Systems. Marcel Dekker, New YorkMATHGoogle Scholar
  61. 61.
    Sluis W.M. (1993) A necessary condition for dynamic feedback linearization. Syst. Control Lett. 21: 277–283MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Trentelman H.L. (1992) On flat systems behaviors and observable image representations. Syst. Control Lett. 19: 43–45CrossRefGoogle Scholar
  63. 63.
    Van Nieuwstadt M., Rathinam M., Murray R.M. (1998) Differential flatness and absolute equivalence of nonlinear control systems. SIAM J. Control Optim. 36(4): 1225–1239MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Yosida K. (1980) Functional Analysis, vol. 123 of Grundlehren der Mathematischen Wissenschaften, 6th edn. Springer, BerlinGoogle Scholar
  65. 65.
    Zervos P. (1913) Sur l’intégration de certains systèmes indéterminés d’équations différentielles. Journal für die reine und angewandte Mathematik 143: 300–312CrossRefGoogle Scholar
  66. 66.
    Zervos P. (1932) Le problème de Monge. Mémorial des Sciences Mathématiques, fascicule LIII. Gauthier-Villars, ParisGoogle Scholar
  67. 67.
    Zharinov V.V. (1992) Geometrical Aspect of Partial Differential Equations. World Scientific, SingaporeGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Centre Automatique et Systèmes, Unité Mathématiques et Systèmes, MINES-ParisTechFontainebleauFrance

Personalised recommendations