New recombination algorithms for bivariate polynomial factorization based on Hensel lifting

Article

Abstract

We present new faster deterministic and probabilistic recombination algorithms to compute the irreducible decomposition of a bivariate polynomial via the classical Hensel lifting technique. For the dense bi-degree polynomial representation, the costs of our recombination algorithms are essentially sub-quadratic.

Keywords

Polynomial factorization Hensel lifting 

Mathematics Subject Classification (2000)

Primary 12Y05 68W30 Secondary 11Y16 12D05 13P05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belabas, K., van Hoeij, M., Klüners, J., Steel, A.: Factoring polynomials over global fields. Journal de Theorie des Nombres de Bordeaux 21(1), 15–39 (2009)MATHMathSciNetGoogle Scholar
  2. 2.
    Berlekamp E.R.: Factoring polynomials over finite fields. Bell Syst. Tech. J. 46, 1853–1859 (1967)MathSciNetGoogle Scholar
  3. 3.
    Berlekamp E.R.: Factoring polynomials over large finite fields. Math. Comp. 24, 713–735 (1970)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bostan, A., Lecerf, G., Schost, É.: Tellegen’s principle into practice. In ISSAC ’03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 37–44. ACM Press (2003)Google Scholar
  5. 5.
    Bostan, A., Lecerf, G., Salvy, B., Schost, É., Wiebelt, B.: Complexity issues in bivariate polynomial factorization. In ISSAC ’04: Proceedings of the 2004 international symposium on Symbolic and algebraic computation, pp. 42–49. ACM Press (2004)Google Scholar
  6. 6.
    Bürgisser P., Clausen M., Shokrollahi M.A.: Algebraic Complexity Theory. Springer, Berlin (1997)MATHGoogle Scholar
  7. 7.
    Chèze G., Galligo A.: Four lectures on polynomial absolute factorization. In: Dickenstein, A., Emiris, I.Z. (eds) Solving Polynomial Equations: Foundations, Algorithms, and Applications volume 14 of Algorithms Computation in Mathematics, pp. 339–392. Springer, Berlin (2005)Google Scholar
  8. 8.
    Davenport, J.H., Trager, B.M.: Factorization over finitely generated fields. In SYMSAC ’81: Proceedings of the Fourth ACM Symposium on Symbolic and Algebraic Computation, pp. 200–205. ACM Press (1981)Google Scholar
  9. 9.
    Fiduccia C.M.: An efficient formula for linear recurrences. SIAM J. Comput. 14(1), 106–112 (1985)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gao S.: Factoring multivariate polynomials via partial differential equations. Math. Comp. 72(242), 801–822 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gao, S., von zur Gathen, J.: Berlekamp’s and Niederreiter’s polynomial factorization algorithms. In Finite fields: theory, applications, and algorithms (Las Vegas, NV 1993) volume 168 of Contemp. Math. pp 101–116. Amer. Math. Soc., Providence, RI (1994)Google Scholar
  12. 12.
    Gao S., Lauder A.G.B.: Hensel lifting and bivariate polynomial factorisation over finite fields. Math. Comp. 71(240), 1663–1676 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kaltofen E.: Polynomial factorization. In: Buchberger, B., Collins, G., Loos, R. (eds) Computer Algebra, pp. 95–113. Springer, New York (1982)Google Scholar
  14. 14.
    Kaltofen, E.: A polynomial reduction from multivariate to bivariate integral polynomial factorization. In: Proceedings of the 14th Symposium on Theory of Computing, pp. 261–266. ACM (1982)Google Scholar
  15. 15.
    Kaltofen, E.: A polynomial-time reduction from bivariate to univariate integral polynomial factorization. In: Proceedings of the 23rd Symposium on Foundations of Computer Science, pp. 57–64. IEEE (1982)Google Scholar
  16. 16.
    Kaltofen, E.: Sparse Hensel lifting. In: EUROCAL’85, vol. 2 (Linz, 1985) volume 204 of LNCS, pp. 4–17. Springer (1985)Google Scholar
  17. 17.
    Kaltofen, E.: Polynomial factorization 1982–1986. In Computers in mathematics (Stanford, CA, 1986) volume 125 of Lecture Notes in Pure and Appl. Math. pp. 285–309. Dekker (1990)Google Scholar
  18. 18.
    Kaltofen, E.: Polynomial factorization 1987–1991. In LATIN ’92 (São Paulo, 1992) volume 583 of Lecture Notes in Comput. Sci. pp. 294–313. Springer (1992)Google Scholar
  19. 19.
    Kaltofen E.: Effective Noether irreducibility forms and applications. J. Comput. Syst. Sci. 50(2), 274–295 (1995)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kaltofen, E.: Polynomial factorization: a success story. In ISSAC ’03: Proceedings of the 2003 international symposium on Symbolic and algebraic computation, pp. 3–4. ACM Press (2003)Google Scholar
  21. 21.
    Kaltofen, E., Saunders, B.D.: On Wiedemann’s method of solving sparse linear systems. In: Mattson, H.F., Mora, T., and Rao, T.R.N., (eds.), Proceedings of AAECC-9 volume 539 of Lect. Notes Comput. Sci. pp. 29–38. Springer (1991)Google Scholar
  22. 22.
    Lang S.: Algebra Volume 211 of Graduate Texts in Mathematics. 3rd edn. Springer, New York (2002)Google Scholar
  23. 23.
    Lecerf G.: Sharp precision in Hensel lifting for bivariate polynomial factorization. Math. Comp. 75, 921–933 (2006)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lecerf G.: Improved dense multivariate polynomial factorization algorithms. J. Symbolic Comput. 42(4), 477–494 (2007)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lecerf, G.: Fast separable factorization and applications. Applicable Algebra Eng., Commun. Comput. 19(2), 135–160 (2008)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Niederreiter H.: Factoring polynomials over finite fields using differential equations and normal bases. Math. Comp. 62(206), 819–830 (1994)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Steel A.: Conquering inseparability: primary decomposition and multivariate factorization over algebraic function fields of positive characteristic. J. Symbolic Comput. 40(3), 1053–1075 (2005)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH, Zürich, Switzerland (2000)Google Scholar
  29. 29.
    The Magma computational algebra system for algebra, number theory and geometry. http://magma.maths.usyd.edu.au/magma/. Computational Algebra Group, School of Mathematics and Statistics, The University of Sydney, NSW 2006 Australia.
  30. 30.
    Von zur Gathen J.: Hensel and Newton methods in valuation rings. Math. Comp. 42(166), 637–661 (1984)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Van Hoeij M.: Factoring polynomials and the knapsack problem. J. Number Theory 95(2), 167–189 (2002)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    zur Gathen J., Gerhard J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  33. 33.
    Zippel R.: Effective Polynomial Computation. Kluwer, Dordrecht (1993)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques (UMR 8100 CNRS)Université de Versailles Saint-QuentinVersaillesFrance

Personalised recommendations