On the geometry of polar varieties

  • Bernd Bank
  • Marc Giusti
  • Joos Heintz
  • Mohab Safey El Din
  • Eric Schost
Article

Abstract

We have developed in the past several algorithms with intrinsic complexity bounds for the problem of point finding in real algebraic varieties. Our aim here is to give a comprehensive presentation of the geometrical tools which are necessary to prove the correctness and complexity estimates of these algorithms. Our results form also the geometrical main ingredients for the computational treatment of singular hypersurfaces. In particular, we show the non–emptiness of suitable generic dual polar varieties of (possibly singular) real varieties, show that generic polar varieties may become singular at smooth points of the original variety and exhibit a sufficient criterion when this is not the case. Further, we introduce the new concept of meagerly generic polar varieties and give a degree estimate for them in terms of the degrees of generic polar varieties. The statements are illustrated by examples and a computer experiment.

Keywords

Real polynomial equation solving Singularities Classic polar varieties Dual polar varieties Generic polar varieties Meagerly generic polar varieties 

Mathematics Subject Classification (2000)

14P05 14B05 14Q10 14Q15 68W30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alzati A., Ottaviani G.: The theorem of Mather on generic projections in the setting of algebraic geometry. Manuscr. Math. 74, 391–412 (1992)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Aubry P., Rouillier F., Safey El Din M.: Real Solving for positive dimensional systems. J. Symb. Comput. 34, 543–560 (2002)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Bank, B., Giusti, M., Heintz, J., Mbakop, G.M.: Polar varieties, real equation solving and data structures: The hypersurface case. J. Complex. 13, 5–27 (1997), Best Paper Award J. ComplexityGoogle Scholar
  4. 4.
    Bank B., Giusti M., Heintz J., Mbakop G.M.: Polar varieties and efficient real elimination. Math. Z. 238, 115–144 (2001)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Bank B., Giusti M., Heintz J., Pardo L.M.: Generalized polar varieties and an efficient real elimination procedure. Kybernetika 40, 519–550 (2004)MathSciNetGoogle Scholar
  6. 6.
    Bank B., Giusti M., Heintz J., Pardo L.M.: Generalized polar varieties: Geometry and algorithms. J. Complex. 21, 377–412 (2005)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Bank, B., Giusti, M., Heintz, J., Pardo, L.M.: Variétés bipolaires et résolution d’une équation polynomiale réelle. preprint 09-06, Humboldt–Universität zu Berlin, Institut für Mathematik, http://www.mathematik.hu-berlin.de/publ/pre/2009/p-list-09.html (2009)
  8. 8.
    Basu S., Pollack R., Roy M.-F.: A new algorithm to find a point in every cell defined by a family of polynomials. In: Caviness, B.F., Johnson, J.R. (eds) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 341–350. Springer, New York (1998)Google Scholar
  9. 9.
    Brasselet, J.P.: Milnor classes via polar varieties. In: Melles, C.G. et al. (eds.) Singularities in algebraic and analytic geometry, San Antonio, TX, 1999, pp. 181–187. Contemp. Math. 266 (2000)Google Scholar
  10. 10.
    Bruns W., Vetter U.: Determinantal rings. Lecture Notes in Mathematics 1327. Springer, Berlin (1988)Google Scholar
  11. 11.
    Castro D., Giusti M., Heintz J., Matera G., Pardo L.M.: The hardness of polynomial equation solving. Found. Comput. Math. 3, 347–420 (2003)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Demazure, M.: Bifurcations and catastrophes. Geometry of solutions to nonlinear problems. Transl. from the 1989 French original by David Chillingworth, Universitext. Springer, Berlin (2000)Google Scholar
  13. 13.
    Dubson, A.: Courants sous–analytiques, théorie d’intersection des ensembles analytiques, invariants numériques des singularités et applications. Thèse d’État, Université Paris VII (1982)Google Scholar
  14. 14.
    Fulton W.: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1984)Google Scholar
  15. 15.
    Giusti, M., Heintz, J.: Kronecker’s smart, little black boxes. In: DeVore, R.A., Iserles, A., Süli, E. (eds.) Foundations of Computational Mathematics, Conference Oxford 1999, Lond. Math. Soc. Lect. Note Ser. 284, pp. 69–104. Cambridge University Press (2001)Google Scholar
  16. 16.
    Grigor’ev D., Vorobjov N.: Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5, 37–64 (1988)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Heintz J.: Definability and fast quantifier elimination in algebraically closed fields. Theoret. Comp. Sci. 24, 239–277 (1983)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Heintz, J., Roy, M.-F., Solernó, P.: On the complexity of semialgebraic sets. In: Ritter, G.X. (ed.), IFIP Information Processing 89, pp. 293–298 Elsevier (1989)Google Scholar
  19. 19.
    Henry, J.P.G., Merle, M.: Limites d’ espaces tangents et transversalité de variétés polaires. In: Algebraic Geometry, Proceedings of International Conference, La Rabida/Spain 1981, Lect. Notes Math. 961, pp. 189–199 (1982)Google Scholar
  20. 20.
    Hirzebruch, F.: Topological methods in algebraic geometry. Translation from the German and appendix one by R. L. E. Schwarzenberger. Appendix two by A. Borel. Reprint of the 2nd, corr. print. of the 3rd edn. 1978. (English) [B] Classics in Mathematics. Springer, Berlin (1995)Google Scholar
  21. 21.
    Kempf G.: On the geometry of a theorem of Riemann. Ann. Math. 98(2), 178–185 (1973)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Kleiman S.L.: Transversality of the general translate. Compos. Math. 28, 287–297 (1973)MathSciNetGoogle Scholar
  23. 23.
    Lê D.T., Teissier B.: Variétés polaires locales et classes de Chern des variétés singulières. Ann. Math. 114(2), 457–491 (1981)Google Scholar
  24. 24.
    Mather J.N.: Generic projections. Ann. Math. 98(2), 226–245 (1973)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Matsumura H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1989)MATHGoogle Scholar
  26. 26.
    Mork H.C., Piene R.: Polars of real singular plane curves. In: Dickenstein, A. (eds) Algorithms in Algebraic Geometry, pp. 99–115. Springer, New York (2008)Google Scholar
  27. 27.
    Navarro Aznar V.: On the Chern classes and the Euler characteristic for nonsingular complete intersections. Proc. Am. Math. Soc. 78, 143–148 (1980)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Piene R.: Polar classes of singular varieties. Ann. Scient. Éc. Norm. Sup. 4. Série, t. 11, 247–276 (1978)MathSciNetMATHGoogle Scholar
  29. 29.
    Rouillier F., Roy M.-F., Safey El Din M.: Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complex. 167, 16–750 (2000)MathSciNetGoogle Scholar
  30. 30.
    Room T.G.: The Geometry of Determinantal Loci. Cambridge Univ. Press, Cambridge (1938)Google Scholar
  31. 31.
    Safey El Din, M., Schost, E.: Polar varieties and computation of one point in each connected component of a smooth real algebraic set. In: Sendra, J.R. (ed.) Proc. of ISSAC 2003, pp. 224–231. ACM Press (2003)Google Scholar
  32. 32.
    Safey El Din, M.: Finding sampling points on real hypersurfaces is easier in singular situations. MEGA Conference, 6 pp (2005)Google Scholar
  33. 33.
    Safey El Din M.: Testing sign conditions on a multivariate polynomial and applications. Math. Comput. Sci. 1, 177–207 (2007)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Safey El Din M., Schost E.: Properness defects of projections and computation of at least one point in each connected component of a real algebraic set. J. Discre. and Comput. Geom. 32, 417–430 (2004)MathSciNetMATHGoogle Scholar
  35. 35.
    Severi F.: La serie canonica e la teoria delle serie principali di gruppi di punti sopra una superficie algebrica. Commentarii Math. Helvetici 4, 268–326 (1932)CrossRefMATHGoogle Scholar
  36. 36.
    Severi F.: Sulle intersezioni delle varieta algebriche e sopra i loro caratteri e singolarita proiettive. Mem. Accad. Sci. Torino 52(2), 61–118 (1902)Google Scholar
  37. 37.
    Shafarevich I.R.: Basic Algebraic Geometry 1: Varieties in Projective Space (Transl. from the Russian by M. Reid.), 2nd edn. Springer, Berlin (1994)MATHGoogle Scholar
  38. 38.
    Spivak M.: Calculus on Manifolds. A Modern Approach to Classical Theorems of Calculus. W. A. Benjamin, Inc, New York–Amsterdam (1965)MATHGoogle Scholar
  39. 39.
    Teissier, B.: Variétés polaires II., Multiplicités polaires, sections planes, et conditions de Whitney. In: Algebraic Geometry, Proceedings of International Conference, La Rabida/Spain 1981, Lect. Notes Math. 961, pp. 314–491. Springer (1982)Google Scholar
  40. 40.
    Teissier, B.: Quelques points de l’histoire des variétés polaires, de Poncelet à nos jours. Sémin. Anal., Univ. Blaise Pascal 1987–1988, 4 (1988)Google Scholar
  41. 41.
    Thom, R.: Modèles mathématiques de la morphogenèse, Chapitre VIII, 5 (viii). Christian Bourgeois Editeur (1980)Google Scholar
  42. 42.
    Todd J.A.: The geometrical invariants of algebraic loci. Proc. London Math. Soc 43, 127–138 (1937)CrossRefMATHGoogle Scholar
  43. 43.
    Todd J.A.: The arithmetical invariants of algebraic loci. Proc. London Mat. Soc. 43, 190–225 (1937)CrossRefMATHGoogle Scholar
  44. 44.
    Vogel W.: Lectures on results on Bezout’s theorem. Tata Institute of Fundamental Research, Bombay (1984)MATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bernd Bank
    • 1
  • Marc Giusti
    • 2
  • Joos Heintz
    • 3
    • 4
  • Mohab Safey El Din
    • 5
  • Eric Schost
    • 6
  1. 1.Humboldt-Universität zu Berlin, Institut für MathematikBerlinGermany
  2. 2.CNRS, École Polytechnique, Laboratoire LIXPalaiseau CedexFrance
  3. 3.Departamento de ComputaciónUniversidad de Buenos Aires and CONICET, Ciudad Univ., Pab.IBuenos AiresArgentina
  4. 4.Departamento de Matemáticas, Estadística y Computación, Facultad de CienciasUniversidad de CantabriaSantanderSpain
  5. 5.UPMC, Univ Paris 06, INRIA, Paris-Rocquencourt, SALSA Project; LIP6; CNRS, UMR 7606, LIP6; UFR Ingéniérie 919, LIP6 Passy–KennedyParisFrance
  6. 6.Computer Science Department, Room 415, Middlesex CollegeUniversity of Western OntarioLondonCanada

Personalised recommendations