Adding constants to string rewriting

  • René Thiemann
  • Hans Zantema
  • Jürgen Giesl
  • Peter Schneider-Kamp
Article
  • 35 Downloads

Abstract

We consider unary term rewriting, i.e., term rewriting with unary signatures where all function symbols are either unary or constants. Terms over such signatures can be transformed into strings by just reading all symbols in the term from left to right, ignoring the optional variable. By lifting this transformation to rewrite rules, any unary term rewrite system (TRS) is transformed into a corresponding string rewrite system (SRS). We investigate which properties are preserved by this transformation. It turns out that any TRS over a unary signature is terminating if and only if the corresponding SRS is terminating. In this way tools for proving termination of string rewriting can be applied for proving termination of unary TRSs. For other rewriting properties including confluence, unique normal form property, weak normalization and relative termination, we show that a similar corresponding preservation property does not hold.

Keywords

Term rewriting String rewriting Termination Confluence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comp. Sci. 236, 133–178 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, London (1998)Google Scholar
  3. 3.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proc. 11th LPAR, LNAI 3452, pp. 301–331 (2005)Google Scholar
  4. 4.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Proc. 3rd IJCAR, LNAI 4130, pp. 281–286 (2006). Tool: http://aprove.informatik.rwth-aachen.de/
  5. 5.
    Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science 55. Cambridge University Press, London (2003)Google Scholar
  6. 6.
    Zantema, H.: Termination of term rewriting by semantic labelling. Fundam. Inform. 24, 89–105 (1995)MATHMathSciNetGoogle Scholar
  7. 7.
    Zantema, H.: Termination of string rewriting proved automatically. J. Autom. Reason. 34, 105–139 (2005). Tool: http://www.win.tue.nl/~hzantema/torpa.html.Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • René Thiemann
    • 1
    • 2
  • Hans Zantema
    • 3
  • Jürgen Giesl
    • 1
  • Peter Schneider-Kamp
    • 1
  1. 1.LuFG Informatik 2, RWTH AachenAachenGermany
  2. 2.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  3. 3.Department of Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations