Advertisement

Parametrizing compactly supported orthonormal wavelets by discrete moments

  • Georg Regensburger
Article

Abstract

We discuss parametrizations of filter coefficients of scaling functions and compactly supported orthonormal wavelets with several vanishing moments. We introduce the first discrete moments of the filter coefficients as parameters. The discrete moments can be expressed in terms of the continuous moments of the related scaling function. To solve the resulting polynomial equations we use symbolic computation and in particular Gröbner bases. The cases of four to ten filter coefficients are discussed and explicit parametrizations are given.

Keywords

Orthonormal wavelets Parametrization Filter coefficients Moments Gröbner bases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker T. and Weispfenning V. (1993). Gröbner Bases, Graduate Texts in Mathematics, vol. 141. Springer, New York Google Scholar
  2. 2.
    Bourbaki N. (1990). Algebra. II. Chap. 4–7. Elements of Mathematics (Berlin). Springer, Berlin Google Scholar
  3. 3.
    Bratteli O. and Jorgensen P. (2002). Wavelets through a Looking Glass. Applied and Numerical Harmonic Analysis. Birkhäuser Boston Inc., Boston Google Scholar
  4. 4.
    Buchberger, B.: An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal (German). Ph.D. Thesis, University of Innsbruck (1965) (English translation published in [7])Google Scholar
  5. 5.
    Buchberger B. (1970). Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequationes Math. 4: 374–383 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Buchberger B. (1998). Introduction to Gröbner bases. In: Buchberger, B. and Winkler, F. (eds) Gröbner Bases and Applications (Linz, 1998), Lond Math. Soc. Lect Note Ser., vol. 251, pp 3–31. Cambridge University Press, Cambridge Google Scholar
  7. 7.
    Buchberger, B.: Bruno Buchberger’s Ph.D. thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41(3–4): 475–511 (2006) (Translated from the 1965 German original by Michael P. Abramson)Google Scholar
  8. 8.
    Charoenlarpnopparut C. and Bose N. (1999). Multidimensional FIR filter bank design using Gröbner bases. IEEE Trans. Circuits Syst., II, Analog Digit. Signal Process. 46(12): 1475–1486 zbMATHCrossRefGoogle Scholar
  9. 9.
    Chyzak F., Paule P., Scherzer O., Schoisswohl A. and Zimmermann B. (2001). The construction of orthonormal wavelets using symbolic methods and a matrix analytical approach for wavelets on the interval. Exp. Math. 10(1): 67–86 zbMATHMathSciNetGoogle Scholar
  10. 10.
    Cohen A. (1990). Ondelettes, analyses multirésolutions et filtres miroirs en quadrature. Ann. Inst. H. Poincaré Anal. Non Linéaire 7(5): 439–459 zbMATHGoogle Scholar
  11. 11.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Undergraduate Texts in Mathematics. Springer, New York (1997). An introduction to computational algebraic geometry and commutative algebraGoogle Scholar
  12. 12.
    Daubechies I. (1988). Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41(7): 909–996 zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Daubechies I. (1992). Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (SIAM), Philadelphia zbMATHGoogle Scholar
  14. 14.
    Daubechies I. (1993). Orthonormal bases of compactly supported wavelets. II. Variations on a theme. SIAM J. Math. Anal. 24(2): 499–519 zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Faugère J.C., Moreau de Saint-Martin F. and Rouillier F. (1998). Design of regular nonseparable bidimensional wavelets using Gröbner basis techniques. IEEE Trans. Signal Process. 46(4): 845–856 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Haar A. (1910). Zur Theorie der orthogonalen Funktionensysteme. (Erste Mitteilung.). Math. Ann. 69: 331–371 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hereford, J.M., Roach, D.W., Pigford, R.: Image compression using parameterized wavelets with feedback. pp. 267–277. SPIE (2003)Google Scholar
  18. 18.
    Jorgensen P.E.T. (2003). Matrix factorizations, algorithms, wavelets. Notices Am. Math. Soc. 50(8): 880–894 zbMATHMathSciNetGoogle Scholar
  19. 19.
    Knuth, D.E.: The art of computer programming. Vol. 1: Fundamental algorithms, 3rd edn. Addison-Wesley, Reading. xx, p. 650 (1997)Google Scholar
  20. 20.
    Lai, M.J., Roach, D.W.: Parameterizations of univariate orthogonal wavelets with short support. In: Approximation Theory, X, St Louis, MO, 2001, Innov. Appl. Math., pp. 369–384. Vanderbilt University Press, Nashville, TN (2002)Google Scholar
  21. 21.
    Lawton W.M. (1990). Tight frames of compactly supported affine wavelets. J. Math. Phys. 31(8): 1898–1901 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lawton W.M. (1991). Necessary and sufficient conditions for constructing orthonormal wavelet bases. J. Math. Phys. 32(1): 57–61 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lebrun J. and Selesnick I. (2004). Gröbner bases and wavelet design. J. Symb. Comput. 37(2): 227–259 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lebrun J. and Vetterli M. (2001). High-order balanced multiwavelets: Theory, factorization and design. IEEE Trans. Signal Process. 49(9): 1918–1930 CrossRefMathSciNetGoogle Scholar
  25. 25.
    Lina J.M. and Mayrand M. (1993). Parametrizations for Daubechies wavelets. Phys. Rev. E (3) 48(6): R4160–R4163 CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mallat S. (1998). A Wavelet Tour of Signal Processing. Academic, San Diego zbMATHGoogle Scholar
  27. 27.
    Park H. (2004). Symbolic computation and signal processing. J. Symb. Comput. 37(2): 209–226 zbMATHCrossRefGoogle Scholar
  28. 28.
    Park H., Kalker T. and Vetterli M. (1997). Gröbner bases and multidimensional FIR multirate systems. Multidimensional Syst. Signal Process. 8(1–2): 11–30 zbMATHCrossRefGoogle Scholar
  29. 29.
    Pollen D. (1990). SUI(2,F[z,1/z]) for F a subfield of C. J. Am. Math. Soc. 3(3): 611–624 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Regensburger G. and Scherzer O. (2005). Symbolic computation for moments and filter coefficients of scaling functions. Ann. Comb. 9(2): 223–243 zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Schneid J. and Pittner S. (1993). On the parametrization of the coefficients of dilation equations for compactly supported wavelets. Computing 51(2): 165–173 zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Selesnick I.W. and Burrus C.S. (1998). Maximally flat low-pass FIR filters with reduced delay. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45(1): 53–68 CrossRefGoogle Scholar
  33. 33.
    Shann W.C. and Yen C.C. (1999). On the exact values of orthonormal scaling coefficients of lengths 8 and 10. Appl. Comput. Harmon. Anal. 6(1): 109–112 zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Sherlock B.G. and Monro D.M. (1998). On the space of orthonormal wavelets. IEEE Trans. Signal Process. 46(6): 1716–1720 zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Strang G. and Nguyen T. (1996). Wavelets and filter banks. Wellesley–Cambridge Press, Wellesley Google Scholar
  36. 36.
    Unser M. and Blu T. (2003). Wavelet theory demystified. IEEE Trans. Signal Process. 51(2): 470–483 CrossRefMathSciNetGoogle Scholar
  37. 37.
    Wang S.H., Tewfik A.H. and Zou H. (1994). Correction to ‘parametrization of compactly supported orthonormal wavelets’. IEEE Trans. Signal Process. 42(1): 208–209 CrossRefGoogle Scholar
  38. 38.
    Wells R.O. (1993). Parametrizing smooth compactly supported wavelets. Trans. Am. Math. Soc. 338(2): 919–931 zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Zou H. and Tewfik A.H. (1993). Parametrization of compactly supported orthonormal wavelets. IEEE Trans. Signal Process. 41(3): 1428–1431 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria

Personalised recommendations