Expected term bases for generic multivariate Hermite interpolation

Article

Abstract

The main goal of the paper is to find an effective estimation for the minimal number of points in \({\mathbb{K}}^{2}\) in general position for which the basis for Hermite interpolation consists of the first ℓ terms (with respect to total degree ordering). As a result we prove that the space of plane curves of degree at most d having singularities of multiplicity ≤ m in general position has the expected dimension if the number of low order singularities (of multiplicity k ≤ 12) is greater then some r(m, k). Additionally, the upper bounds for r(m, k) are given.

Keywords

Multivariate interpolation Algebraic curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander J. and Hirschowitz A. (2000). An asymptotic vanishing theorem for generic unions of multiple points. Invent. Math. 140: 303–325 MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alexander J. and Hirschowitz A. (1995). Polynomial interpolation in several variables. J. Algebr. Geom. 4: 201–222 MATHMathSciNetGoogle Scholar
  3. 3.
    Apel J., Stückrad J., Tworzewski P. and Winiarski T. (1999). Term bases for multivariate interpolation of Hermite type. Univ. Iagell. Acta Math. 37: 37–49 Google Scholar
  4. 4.
    Becker T. and Weispfenning V. (1993). Gröbner Bases. Springer, New York MATHGoogle Scholar
  5. 5.
    Cerlienco L., Mureddu M. (1995) From algebraic sets to monomial linear bases by means of combinatorial algorithms. Discr. Math. 139, 73–87MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ciliberto C. and Miranda R. (2000). Linear systems of plane curves with base points of equal multiplicity. Trans. Am. Math. Soc. 352: 4037–4050 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fulton, W.: Algebraic Curves. W. A. Benjamin, Inc. (1978)Google Scholar
  8. 8.
    Mignon T. (1998). Systèmes linéaires de courbes planes à singularités ordinaires imposées. CRAS 327: 651–654 MATHMathSciNetGoogle Scholar
  9. 9.
    Möller H.M. and Sauer T. (2000). H-bases for polynomial interpolation and system solving. Adv. Comput. Math. 12: 335–362 MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Sauer, T.: Polynomial interpolation of minimal degree and Gröbner bases. London Math. Soc. Lecture Notes Ser. 251. Cambridge University Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland

Personalised recommendations