2LEV-D2P4: a package of high-performance preconditioners for scientific and engineering applications

  • Alfredo Buttari
  • Pasqua D’Ambra
  • Daniela di Serafino
  • Salvatore Filippone
Article

Abstract

We present a package of parallel preconditioners which implements one-level and two-level Domain Decomposition algorithms on the top of the PSBLAS library for sparse matrix computations. The package, named 2LEV-D2P4 (Two-LEVel Domain Decomposition Parallel Preconditioners Package based on PSBLAS), currently includes various versions of additive Schwarz preconditioners that are combined with a coarse-level correction to obtain two-level preconditioners. A pure algebraic formulation of the preconditioners is considered. 2LEV-D2P4 has been written in Fortran~95, exploiting features such as abstract data type creation, functional overloading and dynamic memory management, while providing a smooth path towards the integration in legacy application codes. The package, used with Krylov solvers implemented in PSBLAS, has been tested on large-scale linear systems arising from model problems and real applications, showing its effectiveness.

Keywords

Parallel numerical software Algebraic two-level preconditioners Sparse linear algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bank R.E. and Douglas C.C. (1993). SMMP: sparse matrix multiplication package. Adv. Comput. Math. 1: 127–137 MATHCrossRefGoogle Scholar
  2. 2.
    Bella G., Filippone S., De Maio A. and Testa M. (2005). A simulation model for forest fires. In: Dongarra, K.M.J. and Wasniewski, J. (eds) Proceedings of PARA04 Workshop on State of the Art in Scientific Computing, pp 546–553. Springer, Heidelberg Google Scholar
  3. 3.
    Brezina M. and Vaněk P. (1999). A black-box iterative solver based on a two-level Schwarz method. Computing 63: 233–263 MATHCrossRefGoogle Scholar
  4. 4.
    Buttari A., D’Ambra P., Filippone S. and Serafino D. (2005). Extending PSBLAS to build parallel schwarz preconditioners. In: Dongarra, K.M.J. and Wasniewski, J (eds) Proceedings of PARA04 Workshop on State of the Art in Scientific Computing, pp 593–602. Springer, Heidelberg Google Scholar
  5. 5.
    Buttari, A., D’Ambra, P., di Serafino, D., Filippone, S.: 2LEV-D2P4 User’s Guide (in preparation)Google Scholar
  6. 6.
    Cai X.C. and Saad Y. (1996). Overlapping domain decomposition algorithms for general sparse matrices. Num. Linear Algebra Appl. 3(3): 221–237 MATHCrossRefGoogle Scholar
  7. 7.
    Cai X.C. and Sarkis M. (1999). A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2): 792–797 MATHCrossRefGoogle Scholar
  8. 8.
    Cai X.C. and Widlund O.B. (1992). Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Stat. Comput. 13(1): 243–258 MATHCrossRefGoogle Scholar
  9. 9.
    Chan T. and Mathew T. (1994). Domain decomposition algorithms. In: Iserles, A. (eds) Acta Numerica, pp 61–143. Cambridge University Press, Cambridge Google Scholar
  10. 10.
    D’Ambra, P., di Serafino, D., Filippone, S.: On the development of PSBLAS-based parallel two-level Schwarz preconditioners. Appl. Num. Math. (to appear) (2007)Google Scholar
  11. 11.
    Davis, T.: University of Florida sparse matrix collection home page. http://www.cise.ufl.edu/research/sparse/matricesGoogle Scholar
  12. 12.
    Davis T.A. (2004). Algorithm 832: UMFPACK—an unsymmetric-pattern multifrontal method with a column pre-ordering trategy. ACM Trans. Math. Softw. 30: 196–199 MATHCrossRefGoogle Scholar
  13. 13.
    Dongarra, J., Whaley, R.: A user’s guide to the BLACS v1.0. LAPACK working note #94 CS-95-281, University of Tennessee (1995) http://www.netlib.org/lapack/lawnsGoogle Scholar
  14. 14.
    Duff I., Heroux M. and Pozo R. (2002). An overview of the sparse basic linear algebra subprograms: the new standard from the BLAS technical forum. ACM Trans. Math. Softw. 28(2): 239–267 MATHCrossRefGoogle Scholar
  15. 15.
    Duff I., Marrone M., Radicati G. and Vittoli C. (1997). Level 3 basic linear algebra subprograms for sparse matrices: a user level interface. ACM Trans. Math. Softw. 23(3): 379–401 MATHCrossRefGoogle Scholar
  16. 16.
    Filippone S. and Colajanni M. (2000). PSBLAS: A library for parallel linear algebra computation on sparse matrices. ACM Trans. Math. Softw. 26(4): 527–550 CrossRefGoogle Scholar
  17. 17.
    Filippone S., D’Ambra P. and Colajanni M. (2002). Using a parallel library of sparse linear algebra in a fluid dynamics applications code on linux clusters. In: Joubert, G., Murli, A., Peters, F., and Vanneschi, M. (eds) Proceedings of Parallel Computing—Advances and Current Issues, pp 441–448. Imperial College Press, London Google Scholar
  18. 18.
    Heroux M.A., Bartlett R.A., Howle V.E., Hoekstra R.J., Hu J.J., Kolda T.G., Lehoucq R.B., Long K.R., Pawlowski R.P., Phipps E.T., Salinger A.G., Thornquist H.K., Tuminaro R.S., Willenbring J.M., Williams A. and Stanley K.S. (2005). An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3): 397–423 CrossRefGoogle Scholar
  19. 19.
    Karypis G. and Kumar V. (1999). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1): 359–392 MATHCrossRefGoogle Scholar
  20. 20.
    Li X.S. and Demmel J.W. (2003). SuperLU-DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29(2): 110–140 MATHCrossRefGoogle Scholar
  21. 21.
    Smith B., Bjorstad P. and Gropp W. (1996). Domain decomposition: parallel multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge MATHGoogle Scholar
  22. 22.
    Snir M., Otto S., Huss-Lederman S., Walker D. and Dongarra J. (1998). MPI: The Complete Reference, The MPI Core, vol. 1, 2nd edn. MIT, Cambridge Google Scholar
  23. 23.
    Tuminaro, R.S., Tong, C.: Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines. In: Donnelley, J. (ed.) Proceedings of SuperComputing 2000. Dallas, (2000)Google Scholar
  24. 24.
    Vaněk P., Mandel J. and Brezina M. (1996). Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56: 179–196 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Alfredo Buttari
    • 1
  • Pasqua D’Ambra
    • 2
  • Daniela di Serafino
    • 3
  • Salvatore Filippone
    • 4
  1. 1.Innovative Computing Lab, Department of Computer ScienceUniversity of Tennessee at KnoxvilleKnoxvilleUSA
  2. 2.Institute for High-Performance Computing and Networking, CNRNaplesItaly
  3. 3.Department of MathematicsSecond University of NaplesCasertaItaly
  4. 4.Department of Mechanical EngineeringUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations