General relativity and quantum mechanics: towards a generalization of the Lambert W function A Generalization of the Lambert W Function

  • Tony C. ScottEmail author
  • Robert Mann
  • Roberto E. Martinez II


We present a canonical form for a natural and necessary generalization of the Lambert W function, natural in that it requires minimal mathematical definitions for this generalization, and necessary in that it provides a means of expressing solutions to a number of physical problems of fundamental nature. This generalization expresses the exact solutions for general-relativistic self-gravitating N-body systems in one spatial and one time dimension, and a previously unknown mathematical link between the (1+1) gravity problem and the Schrödinger wave equation.


Implicit Functions Schrödinger Equation Relativity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. (9th printing), Dover, New York, 1970Google Scholar
  2. 2.
    Arfken, G.B.: Mathematical methods for physicists, 2nd ed., Academic Press, New York, 1970Google Scholar
  3. 3.
    Luke, Y.L.: The special functions and their approximations. Vol. 1, Academic Press, New York, 1969Google Scholar
  4. 4.
    Scott, T.C., Babb, J.F., Dalgarno, A., Morgan III, J.D.: J. Chem. Phys. 99, 2841–2854 (1993)CrossRefGoogle Scholar
  5. 5.
    Corless, R., Gonnet, D., Hare, E.G., Jeffrey, D.: Lambert's W function in maple. In: Scott, T.C. (ed) MapleTech 9, (Spring 1993); Corless, R., Gonnet, G., Hare, D.E.G., Jeffrey, D., Knuth, D.: Adv. Comp. Math. 5, 329–359 (1996)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Valluri, S.R., Jeffrey, D.J., Corless, R.M.: Some applications of the Lambert W function to Physics. Can. J. Phys. 78, 823–831 (2000); see also Eric Weisstein's World of Physics, (22.02.2005)CrossRefGoogle Scholar
  7. 7.
    Cranmer, S.R.: Am. J. Phys. 72, 1397–1403 (2004). Google Scholar
  8. 8.
    Mann, R.B., Ohta, T.: Phys. Rev. D. 55, 4723–4747 (1997)CrossRefGoogle Scholar
  9. 9.
    Certain, P.R., Byers Brown, W.: Branch Point Singularities in the Energy of the Delta-Function Model of One-Electron Diatoms. Intern. J. Quantum Chem. 6, 131–142 (1972); Whitton, W.N., Byers Brown, W., Int. J. Quantum Chem. 10, 71–86 (1976)CrossRefGoogle Scholar
  10. 10.
    Martinez II, R.E.: Irrationality from tetration. in preparation, (2005)Google Scholar
  11. 11.
  12. 12.
    Malecki, J.J., Mann, R.B.: Phys. Rev. E. 69, 1–26 (2004)Google Scholar
  13. 13.
    Campbell, S.A.: Dynamics of continuous discrete and impulsive systems. 5, 225–235 (1999)Google Scholar
  14. 14.
    MacDonald, N.: Biological delay systems: linear stability theory. Cambridge University Press, 1969; an der Heiden, U.: J. Math. Biol. 8, 345–364 (1979)MathSciNetGoogle Scholar
  15. 15.
    Imambekov, A., Demler, E.: Exactly solvable one-dimensional Bose-Fermi mixture. private communication, 2005Google Scholar
  16. 16.
    Mann, R.B., Scott, T.C., Martinez, R.E.: Lineal gravity and the Schroedinger wave equation. in preparation, 2005Google Scholar
  17. 17.
    Scott, T.C., Aubert-Frécon, M., Grotendorst, J.: New approach for the electronic energies of the hydrogen molecular ion, Chem. Phys., in press (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tony C. Scott
    • 1
    Email author
  • Robert Mann
    • 2
    • 3
  • Roberto E. Martinez II
    • 4
  1. 1.Institut für Physikalishe Chemie, RWTH-Aachen, Fachbereich ChemieUniversität Duisburg-Essen, and Zentralinstitut für Angewandte Mathematik (ZAM) Forschungszentrum Jülich GmbHGermany
  2. 2.Department of Physics, Professor of Physics and Applied MathematicsUniversity of WaterlooOntarioCanada
  3. 3.Perimeter Institute for Theoretical PhysicsOntarioCanada
  4. 4.Harvard UniversityCambridgeUSA

Personalised recommendations