The big Mother of all dualities 2: Macaulay bases

  • María Emilia Alonso
  • Maria Grazia Marinari
  • Teo Mora


We present some interesting computational applications of Macaulay’s notion of inverse systems and Noether equations. In particular, we discuss an algorithm by Macualay which computes the forgotten notion (introduced by Emmy Noether) of reduced irreducible decomposition for ideals of the polynomial ring.


Lasker–Noether decomposition Macaulay inverse systems 

Mathematics Subject Classification (2000)

13E10 13E05 13P10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso, M.E., Marinari, M.G., Mora, T.: The big Mother of all dualities: Möller Algorithm. Comm. Alg. 31(2), 783–818; 374–383 (2003)Google Scholar
  2. 2.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph. D. Thesis, Innsbruck (1965)Google Scholar
  3. 3.
    Buchberger B. (1970) Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleischunssystem. Aeq. Math. 4, 374–383zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Buchberger B., Möller H.M. (1982) The construction of Multivariate polynomials with Preassigned zeros. Lecture Notes Comput. Sci. 144, 24–31zbMATHGoogle Scholar
  5. 5.
    Cerlienco, L., Mureddu, M.: Algoritmi combinatori per l’interpolazione polinomiale in dimensione ≥  2. Preprint (1990)Google Scholar
  6. 6.
    Cerlienco L., Mureddu M. (1995) From algebraic sets to monomial linear bases by means of combinatorial algorithms. Discrete Math. 139, 73–87zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Gao, S., Rodrigues, V.M., Stroomer, J.: Gröbner basis structure of finite sets of points. (preprint)Google Scholar
  8. 8.
    Gianni P. (1987) Properties of Gröbner bases under specialization. Lecture Notes Comput. Sci. 378, 293–297MathSciNetGoogle Scholar
  9. 9.
    Gröbner W. (1949) Moderne Algebraische Geometrie. Bibliographisches Institut Mannheim. Springer, Berlin Heidelberg, New YorkGoogle Scholar
  10. 10.
    Kalkbrener M. (1987) Solving systems of Algebraic equations by using Gröbner bases. Lecture Notes Comput Sci. 378, 282–292MathSciNetGoogle Scholar
  11. 11.
    Lazard D. (1985) Ideal basis and primary decomposition: case of two variables. J. Symb. Comput. 1, 261–270zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Macaulay F.S. (1913) On the resolution of a given modular system into primary systems including some properties of Hilbert numbers. Math. Ann. 74, 66–121zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Macaulay F.S. (1916) The Algebraic theory of modular systems. Cambridge University Press, CambridgezbMATHGoogle Scholar
  14. 14.
    Marinari M.G., Möller H.M., Mora T. (1993) Gröbner bases of ideals defined by functionals with an application to ideals of projective points. AAECC 4, 1–45CrossRefGoogle Scholar
  15. 15.
    Marinari M.G., Möller H.M., Mora T. (1996) On multiplicities in polynomial system solving. Trans. AMS, 348:3283–3321zbMATHCrossRefGoogle Scholar
  16. 16.
    Marinari M.G., Mora T. (2003) A remark on a remark by Macaulay or Enhancing Lazard Structural Theorem. Bull. Iranian Math. Soc. 29(1):103–145MathSciNetGoogle Scholar
  17. 17.
    Marinari, M.G., Mora, T.: Some comments on Cerlienco–Mureddu algorithm and Enhanced Lazard Structural Theorem rejected by ISSAC-2004 (2004)Google Scholar
  18. 18.
    Marinari, M.G., Mora, T.: Cerlienco–Mureddu Correpondence and Lazard Structural Theorem. Investigaciones Mathematicas (Submitted)(2004)Google Scholar
  19. 19.
    Möller H.M. (1993) Systems of Algebraic equations solved by means of endomorphisms. Lecture Notes Comput. Sci. 673, 43–56zbMATHGoogle Scholar
  20. 20.
    Noether E. (1921) Idealtheorie in Ringbereichen. Math. Annalen 83, 25–66Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • María Emilia Alonso
    • 1
  • Maria Grazia Marinari
    • 2
  • Teo Mora
    • 3
  1. 1.Departmento de ÁlgebraUCMMadridSpain
  2. 2.DIMAUniversità di GenovaGenovaItaly
  3. 3.DISIUniversità di GenovaGenovaItaly

Personalised recommendations