The Correction Capability of the Berlekamp–Massey–Sakata Algorithm with Majority Voting

  • Maria Bras-Amorós
  • Michael E. O’Sullivan


Sakata’s generalization of the Berlekamp–Massey algorithm applies to a broad class of codes defined by an evaluation map on an order domain. In order to decode up to the minimum distance bound, Sakata’s algorithm must be combined with the majority voting algorithm of Feng, Rao and Duursma. This combined algorithm can often decode far more than (d min −1)/2 errors, provided the errors are in general position. We give a precise characterization of the error correction capability of the combined algorithm. We also extend the concept behind Feng and Rao’s improved codes to decoding of errors in general position. The analysis leads to a new characterization of Arf numerical semigroups.


Algebraic geometry codes Orderdomains Decoding Arf semigroups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arf C. (1948). Une interprétation algébrique de la suite des ordres de multiplicité d’une branche algébrique. Proc Lond Math Soc 50(2):256–287zbMATHMathSciNetGoogle Scholar
  2. 2.
    Atiyah M.F., Macdonald I.G. (1969). Introduction to commutative algebra. Addison-Wesley, Reading, MAzbMATHGoogle Scholar
  3. 3.
    Barucci V., Dobbs D.E., Fontana M. (1997). Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains. Mem Am Math Soc 125(598):x+78MathSciNetGoogle Scholar
  4. 4.
    Bourbaki N. (1972). Commutative algebra. Addison-Wesley, Reading, MAzbMATHGoogle Scholar
  5. 5.
    Bras-Amorós M. (2003). Improving evaluation codes. PhD Thesis, Universitat Politècnica de Catalunya, BarcelonaGoogle Scholar
  6. 6.
    Bras-Amorós M. (2004). Acute semigroups, the order bound on the minimum distance, and the Feng–Rao improvements. IEEE Trans Inform Theory 50(6):1282–1289MathSciNetCrossRefGoogle Scholar
  7. 7.
    Campillo A., Farrán J.I., Munuera C. (2000). On the parameters of algebraic–geometry codes related to Arf semigroups. IEEE Trans Inform Theory 46(7):2634–2638zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Duursma I.M. (1993). Majority coset decoding. IEEE Trans Inform Theory 39(3):1067–1070zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Feng G.L., Rao T.R.N. (1993). Decoding algebraic-geometric codes up to the designed minimum distance. IEEE Trans Inform Theory 39(1):37–45zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Feng G.-L., Rao T.R.N. (1995). Improved geometric Goppa codes. I. Basic theory. IEEE Trans Inform Theory 41(6, part 1):1678–1693 (Special issue on algebraic geometry codes)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Garcia A., Stichtenoth H. (1996). On the asymptotic behaviour of some towers of function fields over finite fields. J Number Theory 61(2):248–273zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Geil O., Høholdt T. (2000). Footprints or generalized Bezout’s theorem. IEEE Trans Inform Theory 46(2):635–641zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Høholdt T., van Lint J.H., Pellikaan R. (1998). Algebraic geometry codes. North-Holland, Amsterdam, pp 871–961Google Scholar
  14. 14.
    Jensen H.E., Nielsen R.R., Høholdt T. (1999). Performance analysis of a decoding algorithm for algebraic-geometry codes. IEEE Trans Inform Theory 45(5):1712–1717zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Lipman J. (1971). Stable ideals and Arf rings. Am J Math 93:649–685zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    O’Sullivan M.E. (1995). Decoding of codes defined by a single point on a curve. IEEE Trans Inform Theory 41(6, part 1):1709–1719 (Special issue on algebraic geometry codes)MathSciNetCrossRefGoogle Scholar
  17. 17.
    O’Sullivan, M.E.: Decoding of Hermitian codes beyond (d min −1)/2. In: Proceedings of the 1997 IEEE international symposium on information theory, pp 384. Germany: Ulm 1997Google Scholar
  18. 18.
    O’Sullivan M.E. (2001). New codes for the Berlekamp–Massey–Sakata algorithm. Finite Fields Appl 7(2):293–317MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pellikaan R. (1992). On decoding by error location and dependent sets of error positions. Discrete Math 106/107:369–381 (A collection of contributions in honour of Jack van Lint)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pellikaan R., Stichtenoth H., Torres F. (1998). Weierstrass semigroups in an asymptotically good tower of function fields. Finite Fields Appl 4(4):381–392zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Rosales J.C., García-Sánchez P.A., García-García J.I., Branco M.B. (2004). Arf numerical semigroups. J Algebra 276(1):3–12zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Sakata S. (1990). Extension of the Berlekamp–Massey algorithm to N dimensions. Inform Comput 84(2):207–239zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Stichtenoth H. (1988). A note on Hermitian codes over GF(q 2). IEEE Trans Inform Theory 34(5, part 2):1345–1348 (Coding techniques and coding theory)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Departament d’Enginyeria de la Informació i de les ComunicacionsUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Department of Mathematics and StatisticsSan Diego State UniversitySan DiegoUSA

Personalised recommendations