Polly Two : A New Algebraic Polynomial-based Public-Key Scheme

Article
  • 56 Downloads

Abstract

Since Fellows and Koblitz introduced the generic combinatorially algebraic public-key cryptosystem Polly Cracker in 1993, the question whether there exist secure and efficient instances of Polly Cracker remains unsettled. Namely, many of these schemes succumb to the Linear-Algebra Attacks by D. Naccache et al. and Lenstra. In this paper I present a public-key cryptoscheme Polly Two that is efficient and in some way a modified Polly-Cracker instance, but comprises techniques defending the linear-algebra attacks.

Keywords

Combinatorially algebraic public-key cryptoschemes Polly Cracker EnRoot Linear-Algebra attacks Sparse polynomials System of algebraic equations Elimination ideals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bao, F., Deng, R., Geiselmann, W., Schnorr, C., Steinwandt, R., Wu, H.: Cryptanalysis of two sparse polynomial based public key cryptosystems. In: Public key cryptography 2000. Lecture Notes in Comput Sci pp. 153–164, 1992. Springer, Berlin Heidelberg New York (2001)Google Scholar
  2. 2.
    Becker, T., Weispfenning, V.: Gröbner bases. A computational approach to commutative algebra. In cooperation with Heinz Kredel. Graduate Texts in Mathematics, 141. Springer, Berlin Heidelberg New York (1993)Google Scholar
  3. 3.
    Barkee, B., Can, D.C., Ecks, J., Moriarty, T., Ree, R.F.: Why you cannot even hope to use Gröbner bases in public key cryptography: an open letter to a scientiest who failed and a challenge to those who have not yet failed. In: J Symbol Comput (18), 497–501 (1994)Google Scholar
  4. 4.
    Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, 150. Springer, Berlin Heidelberg New York (1995)Google Scholar
  5. 5.
    Endsuleit R., Geiselmann W., Steinwandt R. (2002). Attacking a polynomial based cryptosystem: Polly Cracker. Int J Inform Secu 1(3):143–148MATHCrossRefGoogle Scholar
  6. 6.
    Fellows M., Koblitz N. (1992). Combinatorial cryptosystems galore! Finite fields: theory, applications, and algorithms (Las Vegas, NV, 1993). Contemp Math 168:51–61MathSciNetGoogle Scholar
  7. 7.
    Geiselmann W., Steinwandt R. (2002). Cryptanalysis of Polly Cracker. IEEE Trans Inform Theory 48(11):2990–2991MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Grant, D., Krastev, K., Lieman, D., Shparlinski, I.: A public key cryptosystem based on sparse polynomials. In: Proceedings of International Conference on coding theory, cryptography, and related areas, Guanajuato, pp. 114–121. Springer, Berlin Heidelberg New York (2000)Google Scholar
  9. 9.
    Grassl, M., Steinwandt, R.: Breaking a Polly-Two challenge. Private communication, (2004)Google Scholar
  10. 10.
    Huynh D. (1986). A superexpoential lower bound for Gröner bases and Church-Rosser commutative Thue systems. Inform Control 68(1–3):196–206MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Koblitz N. (1998). Algebraic aspects of cryptography. Algorithms and Comput Mathe, 3. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Ly, L.: Polly Two – a public-key cryptosytem based on Polly Cracker. Dissertation, Ruhr-Universität Bochum (2002). http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/ LyLeVan/Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Bundesamt für Sicherheit in der Informationstechnik (BSI)BonnGermany

Personalised recommendations