Homomorphic Public-Key Cryptosystems and Encrypting Boolean Circuits

Original article

Abstract

Given an arbitrary finite nontrivial group, we describe a probabilistic public-key cryptosystem in which the decryption function is chosen to be a suitable epimorphism from the free product of finite Abelian groups onto this finite group. It extends the quadratic residue cryptosystem (based on a homomorphism onto the group of two elements) due to Rabin – Goldwasser – Micali. The security of the cryptosystem relies on the intractability of factoring integers. As an immediate corollary of the main construction, we obtain a more direct proof (based on the Barrington technique) of Sander-Young-Yung result on an encrypted simulation of a boolean circuit of the logarithmic depth.

Keywords

Homomorphic cryptosystem Free product of groups Encrypting boolean circuits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barrington D.M., Straubing H., Therien D. (1990). Non-uniform automata over groups. Inf Comput 132:89–109MATHMathSciNetGoogle Scholar
  2. 2.
    Benaloh, J.: Dense probabilistic encryption. In: First annual workshop on selected areas in cryptology, pp. 120–128 (1994)Google Scholar
  3. 3.
    Coppersmith D., Shparlinski I. (2000). On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping. J Cryptol 13:339–360CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Davenport H. (1980). Multiplicative number theory. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  5. 5.
    Do Long Van, Jeyanthi, A., Siromony, R., Subramanian, K.: Public key cryptosystems based on word problems. In: ICOMIDC symposium on mathematics of computations, Ho Chi Minh City, April, 1988Google Scholar
  6. 6.
    Feigenbaum J., Merritt M. (1991). Open questions, talk abstracts, and summary of discussions. DIMACS series in discrete mathematics and theoretical computer science 2:1–45MATHMathSciNetGoogle Scholar
  7. 7.
    Goldwasser, S., Bellare, M.: Lecture notes on cryptography. http://www-cse.ucsd.edu/ users/mihir/papers/gb.html, 2001Google Scholar
  8. 8.
    Goldwasser S., Micali S. (1984). Probabilistic encryption. J Comput Syst Sci 28:270–299CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Grigoriev, D.: Public-key cryptography and invariant theory. arXiv:math.cs.CR/0207080Google Scholar
  10. 10.
    Grigoriev D., Ponomarenko I. (2005). Homomorphic public-key cryptosystems over groups and rings. Quad Matematica 13:305–326MathSciNetGoogle Scholar
  11. 11.
    Ko K.H., Lee S.J., Cheon J.H., Han J.W., Kang J., Park C. (2000). New public-key cryptosystem using braid groups. Lecture Notes Comput Sci 1880:166–183MATHMathSciNetGoogle Scholar
  12. 12.
    Magnus W., Karrass A., Solitar D. (1966). Combinatorial group theory: presentations of groups in terms of generators and relations. Interscience Publishers, New York-London-SydneyMATHGoogle Scholar
  13. 13.
    Koyama K., Maurer U., Okamoto T., Vanstone S. (1991). New public-key schemes based on elliptic curves over the ring \(\mathbb{Z}_n\). Lecture Notes Comput Sci 576:252–266MathSciNetGoogle Scholar
  14. 14.
    Maurer U., Wolf S. (1998). Lower bounds on generic algorithms in groups. Lecture Notes Comput Sci 1403:72–84MATHMathSciNetGoogle Scholar
  15. 15.
    Menezes A., van Oorshot P., Vanstone S. (1997). Handbook of applied cryptography. CRC Press, Boca Raton, p. 307MATHGoogle Scholar
  16. 16.
    Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues. In: Proceedings of the 5th ACM conference on computer and communication security, pp. 59–66 (1998)Google Scholar
  17. 17.
    Okamoto T., Uchiyama S. (1998). A new public-key cryptosystem as secure as factoring. Lecture Notes Comput Sci 1403:308–317MATHMathSciNetGoogle Scholar
  18. 18.
    Paeng, S.-H., Kwon, D., Ha, K.-C., Kim, J.H.: Improved public key cryptosystem using finite non-Abelian groups. Preprint NSRI, KoreaGoogle Scholar
  19. 19.
    Paillier P. (1999). Public-Key Cryptosystem Based on Composite Degree Residuosity Classes. Lecture Notes Comput Sci 1592:223–238MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Rabin M.O. (1980). Probabilistic algorithms in finite fields. SIAM J Comput 9:273–280CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Rappe, D.K.: Algebraisch homomorphe kryptosysteme. Diplomarbeit, Dem Fachbereich Mathematik der Universität Dortmund, Oktober 2000. http://www.matha.mathematik. uni-dortmund.de/~rappe/Google Scholar
  22. 22.
    Rivest, R.L., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. Foundation of Secure Computation. New York: Academic Press, pp. 169–177 (1978)Google Scholar
  23. 23.
    Solovay R., Strassen V. (1977). A fast Monte-Carlo test for primality. SIAM J Comput 6:84–85CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In: Proceedings of the 40th IEEE Symposium on foundations of Computer Science pp. 554–566 (1999)Google Scholar
  25. 25.
    Yao, A.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Symposium on foundations of Computer Science pp. 162–167 (1986)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.IRMARUniversité de RennesRennesFrance
  2. 2.Steklov Institute of MathematicsSt. PetersburgRussia

Personalised recommendations