Advertisement

The Berlekamp-Massey Algorithm revisited

  • Nadia Ben Atti
  • Gema M. Diaz–TocaEmail author
  • Henri Lombardi
Article

Abstract

We propose a slight modification of the Berlekamp-Massey Algorithm for obtaining the minimal polynomial of a given linearly recurrent sequence. Such a modification enables to explain it in a simpler way and to adapt it to lazy evaluation.

Mathematics Subject Classification (2000)

68W30 15A03 

Keywords

Berlekamp-Massey Algorithm Linearly recurrent sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York, ch. 7 1968Google Scholar
  2. 2.
    Cheng, U.: On the continued fraction and Berlekamp's algorithm. IEEE Trans. Inform. Theory, vol. IT-30, 541–44 (1984)Google Scholar
  3. 3.
    Dornstetter, J.L.: On the equivalence Between Berlekamp's and Euclid's Algorithm. IEEE Trans. Inform. Theory, vol. IT-33, 3, 428–431 (1987)Google Scholar
  4. 4.
    Jonckheere, E., Ma, C.: A simple Hankel Interpretation of the Berlekamp–Massey Algorith. Linear Algebra and its Applications 125, 65–76 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Massey, J.L.: Shift register synthesis and BCH decoding. IEEE Trans. Inform. Theory, vol. IT-15, 122–127 (1969)Google Scholar
  6. 6.
    Mills, W.H.: Continued Fractions and Linear Recurrences. Math. Comput. 29, 173–180 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Pan, V.: New Techniques for the Computation of linear recurrence coefficients. Finite Fields and Their Applications 6, 93–118 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press 2005Google Scholar
  9. 9.
    Sugiyama, Y. et al.: A method for solving key equation for decoding Goppa codes. Infor. Contr. vol 27, 87–99 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Welch, L.R., Scholtx, R.A.: Continued fractions and Berlekamp's algorithm. IEEE Trans. Inform. Theory, vol. IT-25, 18–27 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nadia Ben Atti
    • 1
  • Gema M. Diaz–Toca
    • 2
    Email author
  • Henri Lombardi
    • 1
  1. 1.Equipe de Mathématiques, CNRS UMR 6623, UFR des Sciences et TechniquesUniversité de Franche-ComtéBesançon cedexFrance
  2. 2.Dpto. de Matematicas AplicadaUniversidad de MurciaSpain

Personalised recommendations