Advertisement

On the linear complexity profile of nonlinear congruential pseudorandom number generators of higher orders

  • Alev Topuzoğlu
  • Arne WinterhofEmail author
Article

Abstract

Nonlinear congruential methods are attractive alternatives to the classical linear congruential method for pseudorandom number generation. Generators of higher orders are of interest since they admit longer periods. We obtain lower bounds on the linear complexity profile of nonlinear pseudorandom number generators of higher orders. The results have applications in cryptography and in quasi-Monte Carlo methods.

Keywords

Linear complexity profile Nonlinear pseudorandom number generators Inversive generators Sequences over finite fields Recurrences of higher order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn, S.R., Etzion, T., Paterson, K.G.: Permutation polynomials, de Bruijn sequences, and linear complexity. J. of Combinatorial Th. Series A 76(1), 55–82 (1996)CrossRefGoogle Scholar
  2. 2.
    Chou, W.-S.: The period lengths of inversive congruential recursions. Acta Arith. 73(4), 325–341 (1995)Google Scholar
  3. 3.
    Cusick, T., Ding, W.C., Renvall, A.: Stream Ciphers and Number Theory. Amsterdam: North-Holland 1998Google Scholar
  4. 4.
    Dorfer, G., Winterhof, A.: Lattice structure and linear complexity profile of nonlinear pseudorandom number generators. Appl. Alg. Engrg. Comm. Comput. 13(6), 499–508 (2003)CrossRefGoogle Scholar
  5. 5.
    Eichenauer, J., Grothe, H., Lehn, J., Topuzoğlu, A.: A multiple recursive congruential pseudo random number generator. Manuscripta Math. 59(3), 331–346 (1987)CrossRefGoogle Scholar
  6. 6.
    Eichenauer, J., Lehn, J.: A non-linear congruential pseudo random number generator. Statist. Papers 27(4), 315–326 (1986)Google Scholar
  7. 7.
    Eichenauer-Herrmann, J., Herrmann, E., Wegenkittl, S.: A survey of quadratic and inversive congruential pseudorandom numbers. In: Niederreiter, H., et al (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, 127, pp. 66–97. New York: Springer 1998Google Scholar
  8. 8.
    Eichenauer-Herrmann, J., Topuzoğlu, A.: On the period length of congruential pseudorandom number sequences generated by inversions. J. Comput. Appl. Math. 31(1), 87–96 (1990)CrossRefGoogle Scholar
  9. 9.
    Flahive, M., Niederreiter, H.: On inversive congruential generators for pseudorandom numbers. In: Finite Fields, Coding Theory, and Advances in Computing 1991. Lecture Notes in Pure and Appl. Math., 141, pp. 75–80. New York: Dekker 1993Google Scholar
  10. 10.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. New York: Cambridge University Press 1999Google Scholar
  11. 11.
    Griffin, F., Niederreiter, H., Shparlinski, I.E.: On the distribution of nonlinear recursive congruential pseudorandom numbers of higher orders. Lecture Notes in Comp. Sci., 1719, pp. 87-93. Berlin: Springer 1999Google Scholar
  12. 12.
    Gutierrez, J., and Gomez-Perez, D.: Iterations of multivariate polynomials and discrepancy of pseudorandom numbers. In: Proc. 14th Symp. Appl. Algebra Algebraic Alg. Error-Correcting Codes. Lecture Notes in Comp. Sci., 2227, pp. 192–199. Berlin: Springer 2001Google Scholar
  13. 13.
    Gutierrez, J., Shparlinski, I.E., Winterhof, A.: On the linear and nonlinear complexity profile of nonlinear pseudorandom number-generators. IEEE Trans. Inform. Theory 49(1), 60–64 (2003)CrossRefGoogle Scholar
  14. 14.
    Meidl, W., Winterhof, A.: On the linear complexity profile of some new explicit inversive pseudorandom number generators. J. Complexity 20(2/3), 350–355 (2004)Google Scholar
  15. 15.
    Menezes, A.J., van Oorschot, P. C., Vanstone, S. A.: Handbook of Applied Cryptography. Boca Raton: CRC Press 1997Google Scholar
  16. 16.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Philadelphia: SIAM 1992Google Scholar
  17. 17.
    Niederreiter, H.: New developments in uniform pseudorandom number and vector generation. In: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, 106, pp. 87–120. New York: Springer 1995Google Scholar
  18. 18.
    Niederreiter, H.: Some computable complexity measures for binary sequences. In: Ding, C., Helleseth, T., Niederreiter, H (eds.) Sequences and Their Applications, pp. 67–78. London: Springer 1999Google Scholar
  19. 19.
    Niederreiter, H.: Design and analysis of nonlinear pseudorandom number generators. In: Monte Carlo Simulation, pp. 3–9. Rotterdam: A. A. Balkema Publishers 2001Google Scholar
  20. 20.
    Niederreiter, H.: Linear complexity and related complexity measures for sequences. In: Indocrypt 2003. Lect. Notes Comp. Sc. 2904, pp. 1–17. Heidelberg: Springer 2003Google Scholar
  21. 21.
    Niederreiter, H., Shparlinski, I.E.: On the distribution and lattice structure of nonlinear congruential pseudorandom numbers. Finite Fields Appl. 5(3), 246–253 (1999)CrossRefGoogle Scholar
  22. 22.
    Niederreiter, H., Shparlinski, I.E.: On the distribution of inversive congruential pseudorandom numbers in parts of the period. Math. Comp. 70(236), 1569–1574 (2001)CrossRefGoogle Scholar
  23. 23.
    Niederreiter, H., Shparlinski, I.E.: Recent advances in the theory of nonlinear pseudorandom number generators. In: Fang, K.-T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 86–102. Berlin: Springer 2002Google Scholar
  24. 24.
    Niederreiter, H., Winterhof, A.: Lattice structure and linear complexity of nonlinear pseudorandom numbers. Appl. Algebra Engrg. Comm. Comput. 13(4), 319–326 (2002)CrossRefGoogle Scholar
  25. 25.
    Rueppel, R.A.: Stream ciphers. In: Contemporary Cryptology: The Science of Information Integrity, pp. 65–134. New York: IEEE Press 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Sabanci UniversityTuzlaTurkey
  2. 2.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria

Personalised recommendations