Advertisement

Economic Theory

, Volume 67, Issue 2, pp 349–362 | Cite as

On the empirical content of the Beckerian marriage model

  • Jianfei Cao
  • Xiaoxia Shi
  • Matthew ShumEmail author
Research Article

Abstract

This note studies the empirical content of a simple marriage matching model with transferable utility, based on Becker (J Polit Econ 81:813–846, 1973). Under Becker’s conditions, the equilibrium matching is unique and assortative. However, this note shows that when the researcher only observes a subset of relevant characteristics, the unique assortative matching does not uniquely determine a distribution of observed characteristics. This precludes standard approaches to point estimation of the underlying model parameters. We propose a solution to this problem, based on the idea of “random matching.”

Keywords

Beckerian marriage model Assortative matching Indeterminacy Random matching 

JEL Classification

C51 C78 

References

  1. Atakan, A.E.: Assortative matching with explicit search cost. Econometrica 74, 667–680 (2006)CrossRefGoogle Scholar
  2. Becker, G.: A theory of marriage, part 1. J. Polit. Econ. 81, 813–846 (1973)CrossRefGoogle Scholar
  3. Chiappori, P.-A., Oreffice, S., Quintana-Domeque, C.: Fatter attraction: anthropometric and socioeconomic matching on the marriage market. J. Polit. Econ. 120, 659–695 (2012)CrossRefGoogle Scholar
  4. Choo, E., Siow, A.: Who marries whom and why. J. Polit. Econ. 114, 175–201 (2006)CrossRefGoogle Scholar
  5. Dupuy, A., Galichon, A.: Canonical correlation and assortative matching: a remark. Ann. Econ. Stat. 119(120), 375–383 (2015)CrossRefGoogle Scholar
  6. Echenique, F., Lee, S., Shum, M., Yenmez, B.: The revealed preference theory of stable and extremal stable matchings. Econometrica 81, 153–171 (2013)CrossRefGoogle Scholar
  7. Fox, J.: Identification in matching games. Quant. Econ. 1, 203–254 (2010)CrossRefGoogle Scholar
  8. Galichon, A., Salanié, B.: Cupid’s invisible hand: social surplus and identification in matching models. Available at SSRN https://ssrn.com/abstract=1804623 (2015). Accessed 26 Oct 2017
  9. Gourieroux, C., Monfort, A.: Simulation-Based Econometrics Methods (Core Lectures). Oxford University Press, New York (1997)CrossRefGoogle Scholar
  10. Graham, B.: Comparative static and computational methods for an empirical one-to-one transferable utility matching model. In: Structural Econometric Models (Advances in Econometrics, Vol. 31). Emerald Press (2013)Google Scholar
  11. Joe, H.: Multivariate Models and Multivariate Dependence Concepts. CRC Press, London (1997)CrossRefGoogle Scholar
  12. Menzel, K.: Large matching markets as two-sided demand systems. Econometrica 83, 897–941 (2013)CrossRefGoogle Scholar
  13. Roth, A., Sotomayor, M.: Two-Sided Matching. Econometric Society Monographs. Cambridge University Press, Cambridge (1990)Google Scholar
  14. Shimer, R., Smith, L.: Assortative matching and search. Econometrica 68, 342–369 (2000)CrossRefGoogle Scholar
  15. Uetake, K., Watanabe, Y.: Entry by Merger: Estimates from a Two-Sided Matching Model with Externalities. Working paper (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Chicago Booth School of BusinessChicagoUSA
  2. 2.University of Wisconsin at MadisonWisconsinUSA
  3. 3.California Institute of TechnologyCaliforniaUSA

Personalised recommendations