Subjective expected utility with a spectral state space

  • Marcus PivatoEmail author
Research Article


An agent faces a decision under uncertainty with the following structure. There is a set \({\mathcal {A}}\) of “acts”; each will yield an unknown real-valued payoff. Linear combinations of acts are feasible; thus, \({\mathcal {A}}\) is a vector space. But there is no pre-specified set of states of nature. Instead, there is a Boolean algebra \({\mathfrak {I}}\) describing information the agent could acquire. For each element of \({\mathfrak {I}}\), she has a conditional preference order on \({\mathcal {A}}\). I show that if these conditional preferences satisfy certain axioms, then there is a unique compact Hausdorff space \({\mathcal {S}}\) such that elements of \({\mathcal {A}}\) correspond to continuous real-valued functions on \({\mathcal {S}}\), elements of \({\mathfrak {I}}\) correspond to regular closed subsets of \({\mathcal {S}}\), and the conditional preferences have a subjective expected utility (SEU) representation given by a Borel probability measure on \({\mathcal {S}}\) and a continuous utility function. I consider two settings; in one, \({\mathcal {A}}\) has a partial order making it a Riesz space or Banach lattice, and \({\mathfrak {I}}\) is the Boolean algebra of bands in \({\mathcal {A}}\). In the other, \({\mathcal {A}}\) has a multiplication operator making it a commutative Banach algebra, and \({\mathfrak {I}}\) is the Boolean algebra of regular ideals in \({\mathcal {A}}\). Finally, given two such vector spaces \({\mathcal {A}}_1\) and \({\mathcal {A}}_2\) with SEU representations on topological spaces \({\mathcal {S}}_1\) and \({\mathcal {S}}_2\), I show that a preference-preserving homomorphism \({\mathcal {A}}_2{{\longrightarrow }}{\mathcal {A}}_1\) corresponds to a probability-preserving continuous function \({\mathcal {S}}_1{{\longrightarrow }}{\mathcal {S}}_2\). I interpret this as a model of changing awareness.


Subjective expected utility Awareness Subjective state space Riesz space Banach lattice Commutative Banach algebra 

JEL Classification



Supplementary material


  1. Ahn, D.S., Ergin, H.: Framing contingencies. Econometrica 78(2), 655–695 (2010)Google Scholar
  2. Aliprantis, C.D., Border, K.C.: Infinite dimensional analysis: a hitchhiker’s guide, 3rd edn. Springer, Berlin (2006)Google Scholar
  3. Aliprantis, C.D., Burkinshaw, O.: Positive Operators, Pure and Applied Mathematics, vol. 119. Academic Press Inc, Orlando (1985)Google Scholar
  4. Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics, 2nd edn. American Mathematical Society, Providence, RI (2003)Google Scholar
  5. Anscombe, F.J., Aumann, R.J.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205 (1963)Google Scholar
  6. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990)Google Scholar
  7. Dales, H.G., Aiena, P., Eschmeier, J., Laursen, K., Willis, G.A.: Introduction to Banach Algebras, Operators, and Harmonic Analysis. Cambridge University Press, Cambridge (2003)Google Scholar
  8. Dekel, E., Lipman, B.L., Rustichini, A.: Representing preferences with a unique subjective state space. Econometrica 69(4), 891–934 (2001)Google Scholar
  9. Dietrich, F.: Savage’s theorem under changing awareness. J. Econ. Theory 176, 1–54 (2018)Google Scholar
  10. Dominiak, A., Tserenjigmid, G.: Ambiguity under growing awareness. Preprint (2018)Google Scholar
  11. Dubra, J., Maccheroni, F., Ok, E.A.: Expected utility theory without the completeness axiom. J. Econ. Theory 115(1), 118–133 (2004)Google Scholar
  12. Epstein, L.G., Marinacci, M., Seo, K.: Coarse contingencies and ambiguity. Theor. Econ. 2(4), 355–394 (2007)Google Scholar
  13. Evren, Ö.: On the existence of expected multi-utility representations. Econ. Theory 35(3), 575–592 (2008)Google Scholar
  14. Evren, Ö., Ok, E.A.: On the multi-utility representation of preference relations. J. Math. Econ. 47(4–5), 554–563 (2011)Google Scholar
  15. Fremlin, D.H.: Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, Colchester (2004)Google Scholar
  16. Galaabaatar, T., Karni, E.: Expected multi-utility representations. Math. Soc. Sci. 64(3), 242–246 (2012)Google Scholar
  17. Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer, Berlin (2008)Google Scholar
  18. Hayashi, T.: Expanding state space and extension of beliefs. Theory Decis. 73(4), 591–604 (2012)Google Scholar
  19. Ingelstam, L.: Real banach algebras. Ark. Mat. 5, 239–270 (1964)Google Scholar
  20. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)Google Scholar
  21. Kaminski, B.: On quasi-orderings and multi-objective functions. Eur. J. Oper. Res. 177(3), 1591–1598 (2007)Google Scholar
  22. Kaniuth, E.: A Course in Commutative Banach Algebras. Springer, New York (2009)Google Scholar
  23. Kaplansky, I.: Normed algebras. Duke Math. J. 16, 399–418 (1949)Google Scholar
  24. Karni, E.: States of nature and the nature of states. Econ. Philos. 33(1), 73–90 (2017)Google Scholar
  25. Karni, E., Schmeidler, D.: Utility theory with uncertainty. Handb. Math. Econ. IV, 1763–1831 (1991)Google Scholar
  26. Karni, E., Vierø, M.L.: “Reverse Bayesianism”: a choice-based theory of growing awareness. Am. Econ. Rev. 103(7), 2790–2810 (2013)Google Scholar
  27. Karni, E., Vierø, M.L.: Probabilistic sophistication and reverse Bayesianism. J. Risk Uncertain. 50(3), 189–208 (2015)Google Scholar
  28. Karni, E., Vierø, M.L.: Awareness of unawareness: a theory of decision making in the face of ignorance. J. Econ. Theory 168, 301–328 (2017)Google Scholar
  29. Katznelson, Y.: An Introduction to Harmonic Analysis, 1st edn. Dover, New York (1976)Google Scholar
  30. Kreps, D.M.: A representation theorem for “preference for flexibility”. Econometrica 47(3), 565–577 (1979)Google Scholar
  31. Kreps, D.M.: Static choice in the presence of unforeseen contingencies. In: Dasgupta, P., Gale, D., Hart, O., Maskin, E. (eds.) Economic Analysis of Markets and Games: Essays in Honor of Frank Hahn. MIT Press, Cambridge (1992)Google Scholar
  32. Lipecki, Z.: Extension of vector-lattice homomorphisms. Proc. Am. Math. Soc. 79(2), 247–248 (1980)Google Scholar
  33. Luxemburg, W.A.J., Schep, A.R.: An extension theorem for Riesz homomorphisms. Nederl. Akad. Wetensch. Indag. Math. 41(2), 145–154 (1979)Google Scholar
  34. Meyer-Nieberg, P.: Banach lattices. Universitext, Springer, Berlin (1991)Google Scholar
  35. Ok, E.A.: Utility representation of an incomplete preference relation. J. Econ. Theory 104(2), 429–449 (2002)Google Scholar
  36. Palmer, T.: Real C*-algebras. Pac. J. Math. 35(1), 195–204 (1970)Google Scholar
  37. Palmer, T.W.: Banach Algebras and the General Theory of \(^*\)-Algebras, vol. I. Cambridge University Press, Cambridge (1994)Google Scholar
  38. Pivato, M.: Multiutility representations for incomplete difference preorders. Math. Soc. Sci. 66(3), 196–220 (2013)Google Scholar
  39. Pivato, M., Vergopoulos, V.: Subjective expected utility with continuity constraints (2018a).
  40. Pivato, M., Vergopoulos, V.: Subjective expected utility with imperfect perception (2018b).
  41. Pivato, M., Vergopoulos, V.: Measure and integration on Boolean algebras of regular open subsets in a topological space. Preprint (2018c). arXiv:1703.02571
  42. Rosenberg, J.: Structure and applications of real C*-algebras. In: Doran, R.S., Park, E. (eds.) Operator Algebras and Their Applications: A Tribute to Richard V. Kadison. Contemporary Mathematics. American Mathematical Society, San Antonio (2016). arXiv:1505.04091
  43. Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)Google Scholar
  44. Schipper, B.C.: Awareness-dependent subjective expected utility. Int. J. Game Theory 42(3), 725–753 (2013)Google Scholar
  45. Schmeidler, D., Wakker, P.: Expected utility and mathematical expectation. In: Eatwell, J., Milgate, M., Newman, P. (eds.) The New Palgrave: A Dictionary of Economics, vol. 2, pp. 229–232. Macmillan Press, New York (1987). (Reprinted as Schmeidler and Wakker (1990)) Google Scholar
  46. Schmeidler, D., Wakker, P.: Expected utility and mathematical expectation. In: Eatwell, J., Milgate, M., Newman, P. (eds.) Utility and Probability: The New Palgrave, pp. 70–78. Palgrave-Macmillan, London (1990)Google Scholar
  47. Suck, R.: Conjointness as a derived property. J. Math. Psychol. 34(1), 57–80 (1990)Google Scholar
  48. Willard, S.: General Topology. Dover Publications Inc, Mineola, NY (2004)Google Scholar
  49. Yılmaz, Ö.: Utility representation of lower separable preferences. Math. Soc. Sci. 56(3), 389–394 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.THEMAUniversité de Cergy-PontoiseCergy-Pontoise CedexFrance

Personalised recommendations