## Abstract

Bubbly Markov equilibria (BME) are recursive equilibria on the natural state space which admit a non-trivial bubble. The present paper studies the existence and properties of BME in a general class of overlapping generations economies with capital accumulation and stochastic production shocks. Using monotone methods, we develop a general approach to construct Markov equilibria and provide necessary and sufficient conditions for these equilibria to be bubbly. Our main result shows that a BME exists whenever the bubbleless equilibrium is Pareto inefficient due to either overaccumulation of capital or inefficient risk sharing between generations.

## Keywords

Asset bubbles Stochastic OLG Production Markov equilibria Pareto optimality## JEL Classification

C62 D51 E32## Notes

### Acknowledgements

We would like to thank Tim Deeken, Tomoo Kikuchi, Herakles Polemarchakis, Clemens Puppe, Kevin Reffett, Caren Söhner, John Stachurski, and Klaus Wälde for helpful suggestions and discussions and two anonymous referees for their valuable and very constructive comments. We also thank seminar participants at various conferences including the 2013 SAET Conference in Paris, the 2013 Annual Meeting of the Verein für Socialpolitik in Düsseldorf, the 2014 CEF Conference in Oslo, and the 2017 SAET conference in Faro.

## References

- Aiyagari, R., Peled, D.: Dominant root characterization of Pareto optimality and the existence of optimal equilibria in stochastic overlapping generations models. J. Econ. Theory
**54**, 69–83 (1991)CrossRefGoogle Scholar - Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer, Berlin (2007)Google Scholar
- Ball, L., Elmendorf, D., Mankiw, N.: The deficit gamble. J. Money Credit Bank.
**30**, 699–720 (1998)CrossRefGoogle Scholar - Barbie, M., Kaul, A.: The Zilcha criteria for dynamic inefficiency reconsidered. Econ. Theory
**40**, 339–348 (2009). doi: 10.1007/s00199-008-0367-3 CrossRefGoogle Scholar - Barbie, M., Kaul, A.: Pareto optimality and existence of monetary equilibria in a stochastic OLG model: a recursive approach. Working paper, University of Cologne, Cologne (2015)Google Scholar
- Barbie, M., Hagedorn, M., Kaul, A.: On the interaction between risk sharing and capital accumulation in a stochastic OLG model with production. J. Econ. Theory
**137**, 568–579 (2007)CrossRefGoogle Scholar - Bose, A., Ray, D.: Monetary equilibrium in an overlapping generations model with productive capital. Econ. Theory
**3**, 697–716 (1993). doi: 10.1007/BF01210266 CrossRefGoogle Scholar - Buchanan, H.E., Hildebrandt, T.H.: Note on the convergence of a sequence of functions of a certain type. Ann. Math.
**9**(3), 123–126 (1908)CrossRefGoogle Scholar - Cass, D.: On capital overaccumulation in the aggregative neoclassical model of economic growth: a complete characterization. J. Econ. Theory
**4**, 200–223 (1972)CrossRefGoogle Scholar - Chattopadhyay, S., Gottardi, P.: Stochastic OLG models, market structure and optimality. J. Econ. Theory
**89**, 21–67 (1999)CrossRefGoogle Scholar - Coleman, W.J.I.: Equilibrium in a production economy with an income tax. Econometrica
**59**, 1091–1104 (1991)CrossRefGoogle Scholar - Coleman, W.J.I.: Uniqueness of an equilibrium in infinite-horizon economies subject to taxes and externalities. J. Econ. Theory
**95**, 71–78 (2000)CrossRefGoogle Scholar - Demange, G.: On optimality in intergenerational risk sharing. Econ. Theory
**20**, 1–27 (2002). doi: 10.1007/s001990100199 CrossRefGoogle Scholar - Demange, G., Laroque, G.: Social security, optimality, and equilibria in a stochastic overlapping generations economy. J. Public Econ. Theory
**2**(1), 1–23 (2000)CrossRefGoogle Scholar - Diamond, P.: National debt in a neoclassical growth model. Am. Econ. Rev.
**55**(5), 1126–1150 (1965)Google Scholar - Farhi, E., Tirole, J.: Bubbly liquidity. Rev. Econ. Stud.
**79**, 678–706 (2012)CrossRefGoogle Scholar - Galor, O., Ryder, H.E.: Existence, uniqueness, and stability of equilibrium in an overlapping-generations model with productive capital. J. Econ. Theory
**49**, 360–375 (1989)CrossRefGoogle Scholar - Gottardi, P., Kübler, F.: Social security and risk sharing. J. Econ. Theory
**146**, 1078–1106 (2011)CrossRefGoogle Scholar - Greenwood, J., Huffman, G.: On the existence of nonoptimal equilibria in dynamic stochastic economies. J. Econ. Theory
**65**, 611–623 (1995)CrossRefGoogle Scholar - Hauenschild, N.: Capital accumulation in a stochastic overlapping generations model with social security. J. Econ. Theory
**106**, 201–216 (2002)CrossRefGoogle Scholar - Hellwig, C., Lorenzoni, G.: Bubbles and self-enforcing debt. Econometrica
**77**(4), 1137–1164 (2009)CrossRefGoogle Scholar - Hillebrand, M.: On the role of labor supply for the optimal size of social security. J. Econ. Dyn. Control
**35**, 1091–1105 (2011)CrossRefGoogle Scholar - Hillebrand, M.: Uniqueness of Markov equilibrium in stochastic OLG models with nonclassical production. Econ. Lett.
**123**(2), 171–176 (2014)CrossRefGoogle Scholar - Ikeda, D., Phan, T.: Toxic asset bubbles. Econ. Theory
**61**, 241–271 (2016). doi: 10.1007/s00199-015-0928-1 CrossRefGoogle Scholar - Kamihigashi, T., Stachurski, J.: Stochastic stability in monotone economies. Theor. Econ.
**9**, 383–407 (2014)CrossRefGoogle Scholar - Konishi, H., Perera-Tallo, F.: Existence of steady-state equilibrium in an overlapping-generations model with production. Econ. Theory
**9**, 529–537 (1997). doi: 10.1007/BF01213853 CrossRefGoogle Scholar - Kübler, F., Polemarchakis, H.: Stationary Markov equilibria for overlapping generations. Econ. Theory
**24**(3), 623–643 (2004). doi: 10.1007/s00199-004-0523-3 CrossRefGoogle Scholar - Li, J., Lin, S.: Existence and uniqueness of steady state equilibrium in a generalized overlapping generations model. Macroecon. Dyn.
**16**, 299–311 (2012)CrossRefGoogle Scholar - Magill, M., Quinzii, M.: Indeterminacy of equilibrium in stochastic OLG models. Econ. Theory
**21**, 435–454 (2003). doi: 10.1007/s00199-002-0287-6 CrossRefGoogle Scholar - Manuelli, R.: Existence and optimality of currency equilibrium in stochastic overlapping generations models: the pure endowment case. J. Econ. Theory
**51**, 268–294 (1990)CrossRefGoogle Scholar - Martin, A., Ventura, J.: Economic growth with bubbles. Am. Econ. Rev.
**102**, 3033–3058 (2012)CrossRefGoogle Scholar - McGovern, J., Morand, O.F., Reffett, K.L.: Computing minimal state space recursive equilibrium in OLG models with stochastic production. Econ. Theory
**54**, 623–674 (2013). doi: 10.1007/s00199-012-0728-9 CrossRefGoogle Scholar - Miao, J., Wang, P., Xu, L.: Stock market bubbles and unemployment. Econ. Theory
**61**, 273–307 (2016). doi: 10.1007/s00199-015-0906-7 CrossRefGoogle Scholar - Michel, P., Wigniolle, B.: Temporary bubbles. J. Econ. Theory
**112**, 173–183 (2003)CrossRefGoogle Scholar - Morand, O.F., Reffett, K.L.: Existence and uniqueness of equilibrium in nonoptimal unbounded infinite horizon economies. J. Monet. Econ.
**50**, 1351–1373 (2003)CrossRefGoogle Scholar - Morand, O.F., Reffett, K.L.: Stationary Markovian equilibrium in overlapping generations models with stochastic nonclassical production and Markov shocks. J. Math. Econ.
**43**, 501–522 (2007)CrossRefGoogle Scholar - Rangazas, P., Russell, S.: The Zilcha criterion for dynamic inefficiency. Econ. Theory
**26**, 701–716 (2005). doi: 10.1007/s00199-004-0547-8 CrossRefGoogle Scholar - Samuelson, P.A.: An exact consumption-loan model of interest with or without the social contrivance of money. J. Polit. Econ.
**66**(6), 467–482 (1958)CrossRefGoogle Scholar - Tirole, J.: Asset bubbles and overlapping generations. Econometrica
**53**(6), 1499–1528 (1985)CrossRefGoogle Scholar - Wang, Y.: Stationary equilibria in an overlapping generations economy with stochastic production. J. Econ. Theory
**61**(2), 423–435 (1993)CrossRefGoogle Scholar - Wang, Y.: Stationary Markov equilibria in an OLG model with correlated production shocks. Int. Econ. Rev.
**35**(3), 731–744 (1994)CrossRefGoogle Scholar - Weil, P.: Confidence and the real value of money in an overlapping generations economy. Q. J. Econ.
**102**, 1–22 (1987)CrossRefGoogle Scholar - Zilcha, I.: Dynamic efficiency in overlapping generations models with stochastic production. J. Econ. Theory
**52**(2), 364–379 (1990)CrossRefGoogle Scholar