The structure of incomplete preferences

Research Article
  • 300 Downloads

Abstract

I study incomplete preferences as a means to represent indecisiveness. A decomposition into maximal domains of comparability is characterized and used to link optimization of incomplete preferences with maximization of local utility functions. Larger maximal domains are shown to correspond to more decisive preferences. The decomposition can be uniquely recovered from choice data under standard assumptions. Applications to different models within decision theory are discussed.

Keywords

Incomplete preferences Indecisiveness Maximal elements Best elements Revealed preference 

JEL Classification

D11 D81 

Notes

Acknowledgements

I thank the editor, a very helpful anonymous referee, Carlos da Costa, Bruno Furtado and Gil Riella for their comments. I am also grateful to Ana Luiza Perdigão and Rodrigo Naumann for excellent research assistance.

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)Google Scholar
  2. Aumann, R.J.: Utility theory without the completeness axiom. Econometrica 30(3), 445–462 (1962)CrossRefGoogle Scholar
  3. Berge, C.: Topological Spaces. Oliver and Boyd, Edinburgh (1963)Google Scholar
  4. Bewley, Truman F.: Knightian decision theory: part I. Decis. Econ. Fin. 25, 79–110 (2002)CrossRefGoogle Scholar
  5. Dubra, J.: Continuity and completeness under risk. Math. Soc. Sci. 61(1), 80–81 (2011)CrossRefGoogle Scholar
  6. Dubra, J., Maccheroni, F., Ok, E.A.: Expected utility theory without the completeness axiom. J. Econ. Theory 115(1), 118–133 (2004)CrossRefGoogle Scholar
  7. Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63(3), 600–610 (1941)CrossRefGoogle Scholar
  8. Eliaz, K., Ok, E.A.: Indifference or indecisiveness? Choice-theoretic foundations of incomplete preferences. Games Econ. Behav. 56(1), 61–86 (2006)CrossRefGoogle Scholar
  9. Evren, O.: Scalarization methods and expected multi-utility representations. J. Econ. Theory 151, 30–63 (2014)CrossRefGoogle Scholar
  10. Evren, O., Ok, E.A.: On the multi-utility representation of preference relations. J. Math. Econ. 47(4–5), 554–563 (2011)CrossRefGoogle Scholar
  11. Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)Google Scholar
  12. Gul, F., Pesendorfer, W.: Calibrated uncertainty, working paper (2014)Google Scholar
  13. Harzheim, E.: Ordered Sets. Springer, Berlin (2005)Google Scholar
  14. Karni, E., Safra, Z.: Continuity, completeness, betweenness and cone-monotonicity. Math. Soc. Sci. 74, 68–72 (2015)CrossRefGoogle Scholar
  15. Mandler, M.: Incomplete preferences and rational intransitivity of choice. Games Econ. Behav. 50, 255–277 (2005)CrossRefGoogle Scholar
  16. Ok, E.A.: Utility representation of an incomplete preference relation. J. Econ. Theory 104(2), 429–449 (2002)CrossRefGoogle Scholar
  17. Ok, E.A., Ortoleva, P., Riella, G.: Incomplete preferences under uncertainty: indecisiveness in beliefs versus tastes. Econometrica 80(4), 1791–1808 (2012)CrossRefGoogle Scholar
  18. Peleg, B.: Utility functions for partially ordered topological spaces. Econometrica 38(1), 93–96 (1970)CrossRefGoogle Scholar
  19. Rader, T.: Theory of Microeconomics. Academic Press, New York (1972)Google Scholar
  20. Ribeiro, M., Riella, G.: Regular preorders and behavioral indifference. Theory Decis. 82(1), 1–12 (2017)CrossRefGoogle Scholar
  21. Richter, M.K.: Revealed preference theory. Econometrica 34(3), 635–645 (1966)CrossRefGoogle Scholar
  22. Riella, G.: On the representation of incomplete preferences under uncertainty with indecisiveness in tastes and beliefs. Econ. Theory 58(3), 571–600 (2015)CrossRefGoogle Scholar
  23. Schmeidler, D.: A condition for the completeness of partial preference relations. Econometrica 39(2), 403–404 (1971)CrossRefGoogle Scholar
  24. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundam. Math. 16, 386–389 (1930)Google Scholar
  25. Walker, M.: A generalization of the maximum theorem. Int. Econ. Rev. 20, 267–272 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.FGV/EPGE - Escola Brasileira de Economia e FinançasRio de JaneiroBrazil

Personalised recommendations