Economic Theory

, Volume 63, Issue 1, pp 211–231 | Cite as

Interacting information cascades: on the movement of conventions between groups

  • James C. D. Fisher
  • John Wooders
Research Article


When a decision maker is a member of multiple social groups, her actions may cause information to “spill over” from one group to another. We study the nature of these spillovers in an observational learning game where two groups interact via a common player, and where conventions emerge when players follow the decisions of the members of their own groups rather than their own private information. We show that: (i) if a convention develops in one group but not the other group, then the convention spills over via the common player; (ii) when conventions disagree, then the common player’s decision breaks the convention in one group; and (iii) when no convention has developed, then the common player’s decision triggers the same convention in both groups. We also show that information spillovers may reduce welfare, and we investigate the surplus-maximizing timing of spillovers.


Cascades Information spillovers Observational learning Social networks 

JEL Classification

C72 D82 D83 D85 



Wooders is grateful for financial support from the Australian Research Council’s Discovery Projects funding scheme (Project Number DP140103566).

Supplementary material

199_2016_1013_MOESM1_ESM.pdf (461 kb)
Supplementary material 1 (pdf 462 KB)


  1. Acemoglu, D., Dahleh, M., Lobel, I., Ozdaglar, A.: Bayesian learning in social networks. Rev. Econ. Stud. 78, 1201–1236 (2011)CrossRefGoogle Scholar
  2. Ali, S., Kartik, N.: Herding with collective preferences. Econ. Theor. 51, 601–626 (2012)CrossRefGoogle Scholar
  3. Anderson, L., Holt, C.: Information cascades in the laboratory. Am. Econ. Rev. 87, 847–862 (1997)Google Scholar
  4. Bala, V., Goyal, S.: Conformism and diversity under social learning. Econ. Theor. 17, 101–120 (2001)CrossRefGoogle Scholar
  5. Banerjee, A.: A simple model of herd behavior. Q. J. Econ. 107(3), 797–817 (1992)CrossRefGoogle Scholar
  6. Banerjee, A., Fudenberg, D.: Word-of-mouth learning. Games Econ. Behav. 46, 1–22 (2004)CrossRefGoogle Scholar
  7. Bikhchandani, S., Hirshleifer, D., Welch, I.: A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ. 100, 992–1026 (1992)CrossRefGoogle Scholar
  8. Burguet, R., Vives, X.: Social learning and costly information acquisition. Econ. Theor. 15, 185–205 (2000)CrossRefGoogle Scholar
  9. Cai, H., Chen, Y., Fang, H.: Observational learning: evidence from a randomized natural field experiment. Am. Econ. Rev. 99, 864–882 (2009)CrossRefGoogle Scholar
  10. Callander, S., Horner, J.: The wisdom of the minority. J. Econ. Theory 144(e2), 1421–1439 (2009)CrossRefGoogle Scholar
  11. Cao, H., Han, B., Hirshleifer, D.: Taking the road less traveled by: does conversation eradicate pernicious cascades? J. Econ. Theory 146(4), 1418–1436 (2011)CrossRefGoogle Scholar
  12. Cea-Echenique, S., Herves-Beloso, C., Torres-Martinez, J.: Endogenous differential information. Econ. Theory (2015). doi: 10.1007/s00199-015-0924-5
  13. Celen, B., Kariv, S.: An experimental test of observational learning under imperfect information. Econ. Theor. 26, 677–699 (2005)CrossRefGoogle Scholar
  14. Celen, B., Kariv, S.: Observational learning under imperfect information. Games Econ. Behav. 47, 72–86 (2001)CrossRefGoogle Scholar
  15. Cipriani, M., Guarino, A.: Herd behavior and contagion in financial markets. B.E. J. Theor. Econ. 8(1), article 24 (2008)Google Scholar
  16. Drehmann, M., Oechssler, J., Roider, A.: Herding and contrarian behavior in financial markets: an internet experiment. Am. Econ. Rev. 95(5), 1403–1426 (2005)CrossRefGoogle Scholar
  17. Ennis, H., Keister, T.: Optimal banking contracts and financial fragility. Econ. Theor. 61, 335–363 (2016)CrossRefGoogle Scholar
  18. Goeree, J., Palfrey, T., Rogers, B., McKelvey, R.: Self-correcting information cascades. Rev. Econ. Stud. 74, 733–762 (2007)CrossRefGoogle Scholar
  19. Golub, B., Jackson, M.: Naive learning in social networks and the wisdom of crowds. Am. Econ. J. Microecon. 2(1), 1112–1149 (2010)CrossRefGoogle Scholar
  20. Guarino, A., Harmgart, H., Huck, S.: Aggregate information cascades. Games Econ. Behav. 73, 167–185 (2011)CrossRefGoogle Scholar
  21. Guarino, A., Jehiel, P.: Social learning with coarse inference. Working Paper, University College of London (2009)Google Scholar
  22. Javorcik, B.: Does foreign direct investment increase the productivity of domestic firms? In search of spillovers through backward linkages. Am. Econ. Rev. 94, 605–627 (2004)CrossRefGoogle Scholar
  23. Jimenez-Martinez, A.: A model of belief influence in large social networks. Econ. Theor. 59, 21–59 (2015)CrossRefGoogle Scholar
  24. Lindstrom, D., Muñoz-Franco, E.: Migration and the diffusion of modern contraceptive knowledge and use in rural Guatemala. Stud. Fam. Plann. 4, 277–288 (2005)CrossRefGoogle Scholar
  25. Lobel, I., Sadler, E.: Preferences, homophily, and social learning. Working Paper, New York University (2014)Google Scholar
  26. Mueller-Frank, M.: A general framework for rational learning in social networks. Theor. Econ. 8, 1–40 (2013)CrossRefGoogle Scholar
  27. Rogers, E.: Diffusion of Innovations, 3rd edn. Macmillan Publishing, London (1983)Google Scholar
  28. Smith, L., Sorensen, P.: Pathological outcomes of observational learning. Econometrica 68, 371–398 (2000)CrossRefGoogle Scholar
  29. Weizsacker, G.: Do we follow others when we should? A simple test of rational expectation. Am. Econ. Rev. 100, 2340–2360 (2010)CrossRefGoogle Scholar
  30. Wu, J.: Helpful laymen in informational cascades. J. Econ. Behav. Organ. 116, 407–415 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Ford Motor CompanyDearbornUSA
  2. 2.Division of Social ScienceNew York University Abu DhabiAbu DhabiUnited Arab Emirates

Personalised recommendations